

Are mesoporous silicas resistant to radiation damage ?

X. Deschanels, Y. Lou, S. Dourdain, C. Rey

Xavier.deschanels@cea.fr

CEA, ICSM – UMR 5257 CEA-CNRS-UM-ENSCM, 30207 Bagnols-sur-Cèze Cedex, France

XXth Colloque Ganil – 15-20 October 2017

Marcoule Institute for Separation Chemistry

Joint Research Unit (UMR 5257) between CEA, CNRS, Montpellier University, and Chemistry School of Montpellier ENSCM.

Research teams

Support teams

Context and goals

Mesoporous materials :

- 2 nm < d_{pore} < 50 nm (IUPAC definition)
- Mesoporous materials enable access to (strong) curvatures in solid state chemistry
- Mesoporous materials are error tolerant and tend to reorganise spontaneously

Radiation tolerance?

- Interfaces act as sinks for irradiation induced point defects (Frenkel pairs)
- Size of "displacement cascade" ~ Size of the mesoporosity

Mesoporous silica

- Size and organization of the mesoporosity can be easily tuned (elaboration by sol-gel process)
- Many studies on radiation behavior of dense silica and several on Vycor glass (Klaumunzer)

Mesoporous SiO₂ layer deposited on Si wafer

<sup>P. Makowski, X. Deschanels, A. Grandjean, D. Meyer, G. Toquer, F. Goettmann, New. J. Chem. 36 (2012) 531
S. Klaumünzer, Nucl. Instr. Meth. Phys. Res. B 225 (2004) 136-153, 191 (2002) 356-361, 166-167 (2000) 459-464</sup>

Elaboration of the film

ARCAN

Sol-Gel route

CTAB : CHBrN Templating agent : P123: COH... F127: COH... Spherical 3D Ø~ 2-3 nm Cylindrical 2D Ø~ 4 nm Spherical 3D Ø~ 4 nm

Dourdain, S.; Bardeau, J.-F.; Colas, M.; Smarsly, B.; Mehdi, A.; Ocko, B. M.; Gibaud, A., Appl. Phys. Lett. 2005, 86 (11), 113108 3

Objectives and Methodology

✓ Analysis techniques: X-ray reflectivity, FTIR, SEM

Objectives

- Mesoporous structure evolution as well as silica network as a function of irradiation conditions
- Influence of stopping power, dose, pore morphology...
- Understanding of damage mechanisms

Irradiation conditions

	lon	Sample	dE/dx Elec (keV/nm)	dE/dx Nucl (keV/nm)	dpa at fluence 10 ¹⁴ cm ⁻²
JANNuS Saclay	Au 0,5MeV	2D cyl 4nm 3D sph 2nm 3D sph 4nm Non porous	0,85	3,1	0,33
	Au 3MeV	2D cyl 4nm	1,8	2,1	0,18
	Au 7MeV	2D cyl 4nm	2,4	1,5	0,099
	Au 12MeV	2D cyl 4nm	2,7	1,1	0,081
Irrsud	Xe 92MeV	2D cyl 4nm	11	~0	~0

• Annealing at 400°C for sol-gel samples aims to stabilize the SiO₂ structure

Au 0.5 MeV- XRR measurements Effect of fluence

2D Cyl 4 nm - 1 dpa ~ 3x10¹⁴ion/cm²

- Amorphisation, compaction and deformation • of pores (XRR measurments)
- **Confirmation by SEM observations**

Au/cm²

[«] Structure evolution of mesoporous silica under heavy ion irradiations of intermediate energies », Y. Lou, S. Dourdain, C. Rey, Y.

Serruys, D. Siméone, N. Mollard, X. Deschanels *Microporous mesoporous materials* 251 (2017)

Au 0.5 MeV- XRR measurements Structure effects

Damage effect on the material:

- 2D 4nm > 3D 2nm > 3D 4 nm
- Cylindric > spheric
- Small pores > large pores

പ്രം

Au irr. - XRR measurements Stopping power

Au 0,5-3-7-12 MeV Ion energy↑ ballistic effect↓ & electronic effect ↑

Damage effect

- Au 12MeV > Au 0.5 MeV > Au 7 MeV > Au 3 MeV
- Damage less important when electronic and ballistic effects are mixed

Au Irr. – XRR measurments Stopping power

Quantitative confirmation

U shape form for the plot of Cross section versus Energy

- Au 12MeV > Au 0.5 MeV > Au 7 MeV > Au 3 MeV
- Antagonism effect between electronic and ballistic stopping power

Marples, J. A. C., Dose rate effects in radiation damage to vitrified radioactive waste. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 1988, 32 (1), 480-486. 9

Electronic effects

11

2D Φ ~4nm, ¹²⁹Xe, 92MeV, 11 keV/nm 10 Réflectivité(a.u.) 0,1 Réflectivité (a.u.) 0,01 1E-3 0,2 1E-4 0,38 0,40 0,42 0,44 0,46 0,48 0,50 2theta (°) 1E-5 1E-6 1E-7 5E12 Xe/cm2 1E-8 1E13 Xe/cm2 3E13 Xe/cm2 1E-9 6E13 Xe/cm2 1E-10 2 3 5 1 6 2theta (°)

Collapse of the mesoporous structure for high fluence

Observation of track by SEM

•

dE/dx> track formation in dense SiO₂

Dourdain, S.; Deschanels, X.; Toquer, G.; Grygiel, C.; Monnet, I.; Pellet-Rostaing, S.; Grandjean, A., Radiation damage of mesoporous silica thin films monitored by X-ray reflectivity and scanning electron microscopy. *JNM* **2012**, *4*27 (1–3), 411-414

Ballistic effects - Modelling

Modelling

- Structure similar to thin layer 2D cyl-hex 4 nm
- Box creation: MonteCarlo
- Irradiation simulation : Molecular dynamics (Ballistic effects only)

Mesostructure evolution (up to 1,2 dpa)

- Mesopore collapse and deformation of the mesoporous structure
- Box shrinkage

Ballistic effects - Modelling

• Surface atoms (Voronoï)

• Number of surface atoms

- At first, up to 0.4 dpa, increase of the nb. of surface atoms, ie rugosity and pore formation in the wall of the silica network
- For higher damage, decrese in the nb. of surface atoms, ie collapse of the mesoporous structure

- Compaction is dependant on the stopping power of the ions
- Ballistic effects lead to higher damage than electronic ones
- The size of the mesopore is a crucial parameter

In some extent mesoporous materials present tolerance to radiation damage

Separation – conditioning process

Nuclear waste management

- Adsorption of the selected radionuclide
- Encapsulation of the radionuclide by subsequent collapse of the structure (Thermal stress, chemical stress...)

Field of application

Outflows coming from dismantling sites

Thank you for your attention

Thanks to C. Grygiel, I. Monnet, F. Durantel at GANIL facility

Thanks to Y.Serruys and all the staff of JANNUS-Saclay

Thanks to B.Siboulet and J-M.Delaye for modelling study

Thanks to EMIR network for irradiation and to the GDR Needs «Déchets » for funding

Institut de Chimie Séparative de Marcoule UMR 5257 | CEA – CNRS – UM – ENSCM Site de Marcoule | Bâtiment 426 | BP 17171 | F-30207 Bagnols-sur-Cèze Cedex T. +33 (0)4 66 79 60 87 | F. +33 (0)4 66 79 76 11 http://www.icsm.fr