Probing the EoS of asymmetric matter

W. Lynch: NSCL and Department of Physics and Astronomy Michigan State University and the HiRA and $S\pi RIT$ collaborations

- Symmetry energy, EoS and neutron stars.
- Laboratory constraints on the symmetry energy at $\rho < \rho_0$
- Extension of constraints to $\rho > \rho_0$
- Outlook

$$\varepsilon(\rho, \delta)$$
 is the equation of state

$$\begin{split} \epsilon (\rho, \delta) &= (E/A (\rho, \delta) = E/A (\rho, 0) + {}^{\mathsf{TM}_{\bullet}} S(\rho) \\ \\ {}^{\mathsf{TM}_{=}} (\rho_n \text{-} \rho_p) / (\rho_n \text{+} \rho_p) = (N \text{-} Z) / A \end{split}$$

S(ρ) is the symmetry energy

$$\mathbf{P} = \rho^2 \frac{\partial (\mathbf{E} / \mathbf{A})}{\partial \rho} \bigg|_{s/s}$$

P is the pressure ρ is the number density

a

Influence of S(ρ) on a neutron star S(ρ): = density dep. of symmetry energy

Inner crust: Neutron gas in coexistence with "Coulomb lattice" of nuclei. $S(\rho)$ governs thickness of crust and the observed frequencies in star quakes.

Inner boundary of inner / crust: Cylindrical and plate-like nuclear "pasta"

Inner core: Composition is unknown. Could be nuclear, quark or strange matter.

Laboratory constraints on Symmetry energy at $\rho < \rho_0$

- Such experimental observables have been analyzed to provide constraints on $S_0=S(\rho_0)$ and L.
- Some sensitive observables:
 - masses
 - Isobaric Analog States (IAS)
 - Electric dipole polarizability (α_0)
 - Diffusion of neutrons and protons in peripheral collisions HIC (Sn+Sn)
- Calculations often use Skyrme functionals for these observables of the form: $(\mathbf{x}_{1}) = \mathbf{x}_{2} + \mathbf{x}_{3} + \mathbf{x}_{4} + \mathbf{x}_{3}^{2/3} + \mathbf{x}_{4} + \mathbf{x}_{3}^{2/3}$

$$S(r) = ar + br^{1+s} + cr^{2/3} + dr^{5}$$

- c and d provide kinetic energy and effective mass contributions to $S(\rho)$ and are independent of S_0 and L.
- Constraints on S_0 and L come from the fit values of a and b, where

$$a = S_0 / r_0 - br_0^{s} - cr_0^{-1/3} - dr_0^{2/3}$$
$$b = \left[L/3 - S_0 + cr_0^{2/3} + dr_0^{5/3} \right] / \left[Sr_0^{1+s} \right]$$

$$S(\Gamma) = S_{o} + \frac{L}{3} \left(\frac{\Gamma_{B} - \Gamma_{0}}{\Gamma_{0}} \right) + \frac{K_{sym}}{18} \left(\frac{\Gamma_{B} - \Gamma_{0}}{\Gamma_{0}} \right)^{2} + \dots$$

The values for S_0 and L are obtained at subsaturation densities, and are extrapolated to $\rho_{0.}$

What density does each observable actually probe? consider the fits of Alex Brown to masses.

- Alex fit the masses of doubly closed shell nuclei well, but allowed different neutron skin thicknesses of $\Delta R_{np}=0.16$, 0.20 and 24 fm. These correspond to the 3 different regions in the (S₀, L) plane.
- All Brown fits provide $S(\rho)=24.8$ MeV at $\rho/\rho_0=0.63\pm.03$. This is what the masses determine.
- Let's test the linear extrapolation
- The symmetry energy functional is not linear between $0.6 < \rho/\rho_0 < 1$.
- Extrapolation to ρ₀ depends on the non-linearity of S(ρ) at 0.63 <ρ <1, which is not constrained. Constraints on S₀ and L depend on this non-linear extrapolation.

B.A. Brown, Phys. Rev. Lett. 111, 232502 (2013)

What does that tell us?

- This analysis provides an unambiguous value for S(ρ)=24.8 ±0.8 MeV at ρ/ρ₀=.0.63±0.03
- This is the density where Brown's analyses constrain S(ρ) best.
- Additional information can be provided by separately analyzing the fits of masses over different mass ranges. (e.g. Danielewicz, et al, Nucl. Phys. A 922 (2014) 1.)

Constraints from ratios of neutron and proton spectra

• Symmetry potential expels neutrons and attracts protons. Sensitive to L, S_0 , and nucleon effective masses.

• Measured ratios spectra for neutrons and protons at 90^o in the center of mass for central ¹²⁴Sn+¹²⁴Sn and ¹¹²S+ ¹¹²Sn collisions at E/A=120 MeV. $dM_n (q_{cm} = 90^\circ) / dE_{cm} dW$

$$R_{n/p} = \frac{dM_{p}(q_{cm} - 90^{\circ})}{dM_{p}(q_{cm} - 90^{\circ})} / dE_{cm}dW$$

- Theory predicts that smaller L will result in larger $R_{n/p}$.
- Calculate the ratios with ImQMD transport theory varying S_0 , L, m_n^* and m_p^*

- Four dimensional Bayesian analyses of spectral ratios using Madai:
- Parameters: S_0 , L, m_n^* and m_p^*

- We obtain $\rho_S / \rho_0 = 0.39 \oplus 0.6$ and $S(\rho_S) = 16.1 \pm 1.8$ MeV.
- The effective masses are very important for neutron-star cooling, and will be measured more precisely next spring.
- Best fit : $m_s^* / m_N = 0.77 \pm 0.11$ and $\left(m_n / m_n^* - m_p / m_p^* \right) / (2d) = 0.5 \pm 0.6$

What density do the constraint contours imply?

• Major axis of contour is in the direction of \vec{u} and has slope M

 $\mathbf{M}(\boldsymbol{\Gamma}_{s}) = -\left(\P\mathbf{S}(\boldsymbol{\Gamma}_{s})/\P\mathbf{L}\right) / \left(\P\mathbf{S}(\boldsymbol{\Gamma}_{s})/\P\mathbf{S}_{0}\right);$

M depends monotonically on Γ_{s}

- Best point to evaluate M and determine ρ_s and S(ρ) is at the center of the ellipse.
- ρ_s is not very model dependent, however.
- For Brown M_{exp} = -0.100± 0.008 ρ_S / ρ_0 = 0.63 \oplus 0.3 and S(ρ_S) = 24.7±0.8 MeV, same as before.

Density dependence of symmetry energy

- Figure shows the values for S(ρ) obtained by these analyses.
- The best constrained values are at $0.6 < \rho/\rho_0 < 0.80$. Little or no constraints above $\rho/\rho_0 \approx 0.8$.
- Red curve is the ab-initio calculation by C. Drischler et al. PRC (2014)
- Constraints are similar to the density dependence from IAS recently published by Danielewicz et al., NPA (2017) shown by blue contour.
- Constraints from IAS and asymmetry skins by by Danielewicz et al., NPA (2017) shown by red contour.
- The polarizability constraint is not directly a constraint on symmetry energy and can not be analyzed as the others. I refer you to Zhang PRC 92, (20150.

W.G. Lynch and M.B. Tsang, (2017)

Intermediate Summary

- Constraint contours, as shown on the right, are inherently misleading.
 - To obtain the values for L and S_0 shown by these contours, one must do an unconstrained non-linear extrapolation from the sensitive density ρ_s to ρ_0 .
 - We know little about $S(\rho)$ near $\rho_0 \rightarrow$ this extrapolation is rather uncertain.
- It is much better to provide the symmetry energy at the sensitive density of each observable.

- Many nuclear stucture and reactions have constrained the symmetry energy at $\rho < \rho_0$, as I have discussed.
 - At $\rho < \rho_0$, situation improving rapidly.
- At $\rho > \rho_0$, work just beginning.
 - Important to constrain all theoretical unknowns and reconcile discrepancies.

$SP\pi RIT$ -Time Projection Chamber exp. at RIBF

Experimental Setup

- •134 x 86 x 53 cm³ effective volume
- •dE/dX B \rangle particle identification.
- •Target at the entrance of chamber.
- •Readout with ~12000 pads.
- Neutrons 15°<θ<30° meas. by NeuLAND
 Experiment completed 6/1/2016

E/A MeV	Reaction	$\frac{N-Z}{A}$	focus
270	$^{132}Sn + ^{124}Sn$.22	$S(\rho), m_{n}^{*} - m_{p}^{*}$
270	$^{108}Sn + ^{112}Sn$.08	$S(\rho), m_{n}^{*} - m_{p}^{*}$
270	124 Sn+ 112 Sn	.15	$\sigma_{nn}, \sigma_{np}, \sigma_{pp}$
270	112 Sn+ 124 Sn	.15	$\sigma_{nn}, \sigma_{np}, \sigma_{pp}$

Studies with S π RIT TPC at $\rho >> \rho_0$

- Measure the energy dependence of pion production.
- Have measured at E/A=270 MeV.
- Spectra are sensitive to the symmetry energy.
- Most theories predict an enhanced sensitivity to the symmetry energy at lower incident energies.
- We plan to also measure at E/A=200 MeV.
 - Useful test of the transport theory description of pion production near threshold
- Similar information can be obtained by comparing neutron and proton emission.

Some data: use of vertex reconstruction to separate reactions on target from reactions on counter gas.

Everything worked, data looks excellent

- We are able to identify cleanly pions through ions beyond ⁷Li.
- Right now we are finalizing our calibrations for heavier ions.
- We also determining the experimental efficiencies in regions of high track density.
- First results for next year.

Relevance to the EoS at $\rho > \rho_0$

- Steiner et al., ApJ 722, 33 extract R=11.5 \pm 1.5 km from X-ray bursters and quiescent binary systems. Other radius measurements have differed by the order of 2 km.
- Comparable constraints on pressure of 30 MeV/fm³ < P < 86 MeV/fm³ at n_B = 0.43 /fm^3 from neutron star R vs. M correlation and Heavy ion collisions. (Factor of 3). Heavy ion "constraints" appear much tighter at $0.3 < n_B < 0.4$ /fm^3 and would be considerably improved by constraining S(ρ) at $\rho > \rho_0$.

Summary and outlook

- Significant constraints on the symmetry energy at well defined densities are emerging for $\rho < \rho_0$.
- It is important to determine the sensitive density probed by each observable and then extract the symmetry energy at that density.
 - Have constraints on $S(\rho)$ at 0.25< ρ/ρ_0 <0.75.
- Key issues are to constrain the symmetry energy at $0.80 < \rho/\rho_0 < 2.0$.
 - S π RiT TPC experimental program should be able to explore pion and nucleon observables and provide new constraints on S(ρ) in the region of at 0.80< ρ/ρ_0 <2.0. This density region is highly relevant to the mass-radius relationship of neutron stars.
- This also probes the density region where there are contradictory constraints from previous measurements of π^-/π^+ spectral ratios and from the comparison of n vs. p elliptical flows.

SπRIT

SAMURAI Pion Reconstruction and Ion Tracker

50+ scientists from China, Japan, Korea, Poland, France, Germany and U.S.

