

ACTAR TPC: an active target and time projection chamber for nuclear physics

Structure of exotic nuclei in inverse kinematics

- □ Study of nuclei with short half-life
- □ Low beam intensity
- □ Resolution strongly depends on target thickness

Need thick targets and excellent resolution

ACTIVE TARGETS

- □ Study of nuclei with short half-life, produced with small intensity
- □ Use of thick target without loss of resolution
- Detection of very low energy recoils

Active target: (Gaseous) detector in which the atoms of the gas are used as a target

□ Reactions with very negative Q-value in inverse kinematics

M. Vandebrouck, PhD thesis, Université Paris-Sud XI (2013)

□ Reactions with very negative Q-value in inverse kinematics

- \rightarrow recoil stops inside the target
- □ Study of excitation functions
 - \rightarrow thick target, need to differentiate the reaction channels

T. Roger, PhD thesis, Université de Caen (2009)

- □ Reactions with very negative Q-value in inverse kinematics
 - \rightarrow recoil stops inside the target
- □ Study of excitation functions
 - \rightarrow thick target, need to differentiate the reaction channels
- □ Reactions with very low intensity beams
 - \rightarrow thick target, possibly no ¹²C contamination

Example: ¹³²Sn(d,p) reaction

- \rightarrow For the same energy loss in the target, about 3x more deutons in D₂ gas than in solid CD₂ target
- \rightarrow Vertexing: possibility to increase the target thickness without loss of resolution
- \rightarrow Overall gain of D₂ gaseous target: factor up to 100!

ACTARsim report: http://pro.ganil-spiral2.eu/spiral2/instrumentation/actar-tpc/actarsim-2013-report/view

Drift region:

- \rightarrow Demonstrator: 1 mm pitch single wire field cage
- \rightarrow Final chamber: double wire field cage
- □ Amplification region:
 - \rightarrow Micromegas, 220 µm gap: OK for low pressure
 - \rightarrow Fast timing, robust, cost effective
- □ Segmented pad plane:
 - \rightarrow Very high density: 2x2 mm² (= 25 channels/cm²)
 - \rightarrow Total 16348 electronics channels, digitized (GET system)
- □ Auxiliary detectors:
 - \rightarrow Telescopes for escaping particles (Si+Si or Si+CsI)
 - → LaBr₃ or CeBr₃ for γ rays (SpecMAT ERC R. Raabe)

□ Field cage:

- \rightarrow Needs to be transparent to particles: wires
- → Horizontal electric field between the field cage and the walls leaks in the drift region: deformed trajectories
- \rightarrow Add a second wire plane to reduce this effect

row number

Detection plane:

- \rightarrow 128 x 128 pads, 2 mm side
- → Challenge to connect 16384 electronic channels on a surface of 25x25 cm² that serves as interface with outside (must sustain 1 bar differential pressure)
- \rightarrow 2 solutions investigated (and built)

Multi-layer PCB routing solution : P. Gangnant/M. Blaizot-GANIL JST Connectors, 0.5 mm pitch

FAKIR solution : J. Pibernat-CENBG

20/10/2017

Detection plane: FAKIR, many steps before bulking the micromegas

- the metal plate is drilled to obtain 1.5 mm diameter holes every 2 mm on the whole surface that will contain pads;
- a 30 µm layer of copper is deposited on the plate (in order to fix the PCB layers);
- the holes are filled with an epoxy resin, that is used to insulate the pads connection from the metal core;
- the PCB layers (25 μm Krempel adhesive, 75 μm polyimide and 18 μm copper) are added on both sides of the plate;
- the resulting stack is drilled again, at a diameter of 1 mm, inside the holes previously filled with resin;
- the pads (and ground ring around the active area) are etched on both sides of the plane;
- the copper surfaces (pads, ring) and the holes are metallized (20 to $30 \ \mu m$);
- a protection solder mask is applied around the pads;
- the connectors with pins every 2 mm are inserted and wave soldered (this part of the process has been realized by an external company, FEDD company [12]);
- final grinding and polishing are applied;

J. Giovinazzo et al., submitted to NIM A

Detection plane: FAKIR

7 mm thick stainless steal plate drilled with 16384 holes, 1.5 mm diameter, 2 mm pitch

Detection plane: FAKIR

Pad plane surface after grinding step (last step before bulking)

Detection plane: FAKIR

Pad plane with 220 μ m micromegas bulk

E.C. Pollaco et al., Physics Procedia 37, 1799 (2012)

 \rightarrow Very front end sparking protection circuit

2x128 channel ZAP boards designed at CENBG

- \rightarrow Very front end sparking protection circuit
- \rightarrow ASIC and ADC boards (AsAd)

- \rightarrow Very front end sparking protection circuit
- \rightarrow ASIC and ADC boards (AsAd)
- → Concentration boards and Trigger module (CoBo & MuTant)

- \rightarrow Very front end sparking protection circuit
- \rightarrow ASIC and ADC boards (AsAd)
- → Concentration boards and Trigger module (CoBo & MuTant)
- \rightarrow Each channel equipped with 512 samples ADC readout depth: 8 Mega Voxels in total

- \rightarrow Very front end sparking protection circuit
- \rightarrow ASIC and ADC boards (AsAd)
- → Concentration boards and Trigger module (CoBo & MuTant)
- \rightarrow Each channel equipped with 512 samples ADC readout depth: 8 Mega Voxels in total

 \rightarrow Angular resolution tested with a laser (no straggling)

3D angular resolution: 0.06° FWHM \rightarrow dominated by the straggling

- \rightarrow Angular resolution tested with a laser (no straggling)
- → Excitation energy resolution tested with ⁵⁸Ni(p,p) @ Elab = 3A MeV $\rightarrow \sim 0$ MeV

E* determined with proton angle and energy (range) $\rightarrow \sim 175 \text{ keV FWHM}$

B. Mauss, PhD thesis - GANIL

- \rightarrow Angular resolution tested with a laser (no straggling)
- → Excitation energy resolution tested with 58Ni(p,p) @ Elab = 3A MeV $\rightarrow \sim 0$ MeV
- \rightarrow PID capabilities (room for improvement)

B. Mauss, PhD thesis - GANIL

- \rightarrow Angular resolution tested with a laser (no straggling)
- → Excitation energy resolution tested with ⁵⁸Ni(p,p) @ Elab = 3A MeV $\rightarrow \sim 0$ MeV
- \rightarrow PID capabilities (room for improvement)
- \rightarrow Detection limits: gain curves can be measured for any gas foreseen to be used

For most "classic" gas mixtures, single electron detection can be achieved

Status of the detector today:

- \rightarrow Mounted on the G3 beam line
- \rightarrow All electronics plugged (~ 5% failure, connexion problems that will be solved next week)
- \rightarrow Field cage successfully mounted and polarized
- \rightarrow First tests in alpha source next week
- \rightarrow Commissioning planned for Nov. 20th: ¹⁸O(p,p) resonant scattering reaction

Planned experiments (2018 - 2019)

 \rightarrow Resonant scattering with ¹⁷F and ³²Ar on proton: SPIRAL1 beams

Planned experiments (2018 - 2019)

- \rightarrow Resonant scattering with ¹⁷F and ³²Ar on proton: SPIRAL1 beams
- → Proton decay studies of ⁴⁸Ni and ⁵⁴Ni: LISE fragmentation beams TPC mode

Study of proton-proton correlations in the twoproton radioactivity of ⁴⁸Ni or ⁵⁴Zn (J. Giovinazzo - CENBG)

K. Miernik et al., EPJA 42, 431 (2009)

Proton-decay branches from the 10+ isomer in ⁵⁴Ni (D. Rudolph – Lund University)

Technical choice (wire field cage, 2x2 mm² pads, micromegas) validated with the demonstrator

- \rightarrow Angular resolution: limited by the straggling (for tracks length > 1 cm)
- \rightarrow Range resolution: better than 1 mm
- \rightarrow High gain reached: detection of single ionization electrons
- \rightarrow Multiparticle tracking possible

Final detector fully mounted but:

- \rightarrow Few connectics problems (need to check the connexions one by one)
- \rightarrow Still some firmware problems on the CoBo boards (bit flip problems). MSU is working on it
- \rightarrow Solutions to these problems are known

Future physics program will start in 2018

- \rightarrow 4 experiments accepted at GANIL
- \rightarrow 5 proposal received for the next PAC
- \rightarrow ACTAR TPC pre-PAC meeting will be organized before the 2018 PAC.

Workshop on Active Targets and Time Projection Chambers for High-intensity and Heavy-ion beams in Nuclear Physics

Second GDS Topical Meeting

16-19 January 2018. Santiago de Compostela, Spain

- Physics with Gas Detections Systems (GDS)
- Active Target and TPCs: ongoing and forthcoming projects
- Experiments with high-intensity and heavy-ion beams
- Gas properties for high-intensity and heavy-ion beams
- Ancillary detectors for high-intensity and heavy-ion beams
- Simulations and electronics for GDS

Information and registration: https://indico.in2p3.fr/event/16443/

□ ACTAR TPC ERC Project Planning

- → Experiments at GANIL/G3 (2016/2017), GANIL/LISE (2017), HIE-ISOLDE (2018)
- \rightarrow Demonstrator experiments at IPNO (July 2015)

Document on the exploitation of LISE in the horizon of 5 years currently written

- \rightarrow Working groups constituted: shell evolution, collective modes, nuclear astrophysics...
- \rightarrow Presentation at the next GANIL SAC in October

□ Preliminary conclusions of the "collective modes" working group:

- → Possibility to combine ACTAR TPC and "classic" solid target + Château de Cristal setup
- → Study (α , α ') or (p,p') and (γ^* , γ) at the same time!

20/10/2017

MAYA / ACTAR TPC collaboration

GANIL	<u>K.U. Leuven</u>	<u>IPNO</u>	CENBG	
M.Babo	F.Flavigny	V.Chambert	B.Blank	Η.
M.Blaizot	R.Orlandi	F.Dorangeville	J.Giovinazzo	J.B
P.Bourgault	R.Raabe	E.Khan	J.L.Pedroza	D.
S.Damoy	G.Randisi	A.Lermitage	J.Pibernat	M.C
G.Fremont	F.Renzi	A.Maroni		B.F
J.Goupil	S.Sambi	G.Noel		
G.F.Grinyer		J.Peyre	<u>CEA/IRFU</u>	
G.Lebertre		J.Pouthas	F.Druillole*	
L.Legeard		P.Rosier	A.Gillibert	
C.Maugeais	GANIL	D.Suzuki	E.C.Pollacco	
J.Pancin	K.Turzo	T.Zerguerras	P.Sizun	
D.Perez-Loureiro	* M.Vandebrouck	_		
C.Porte*	V.Vandevoorde			
B .Raine	G.Voltolini			
T.Roger	G.Wittwer			
F.Saillant				
C.Spitaels				
L.Suen*				
Students 🔴 F	Postdocs *Alumn	i		

T. Roger – Colloque GANIL 2017

.