

Reaction dynamics and exotic systems: a focus on fast processes

T. Marchi (IKS, KU Leuven) – XX Colloque GANIL, Amboise 15-20 October 2017

Motivation and outline

Pre-equilibrium revival

PHYSICAL REVIEW C 91, 014603 (2015)

Systematic study of pre-equilibrium emission at low energies in ¹²C- and ¹⁶O-induced reactions

Manoj Kumar Sharma,^{1,*} Pushendra P. Singh,² Devendra P. Singh,^{3,†} Abhishek Yadav,³ Vijay Raj Sharma,³ Indu Bala,⁴

Rakesh Kumar,⁴ Unnati,³ B. P. Singh,^{3,‡} and R. Prasad³

¹Department of Physics, Shri Varsheny College, Aligarh 202 001, India ²Department of Physics, Indian Institute of Technology, Ropar, Punjab 140001, India ³Department of Physics, A.M.U., Aligarh 202002, India ⁴Inter University Accelerator Centre, New Delhi, 110067, India

(Received 25 September 2014; revised manuscript received 22 October 2014; published 6 January 2015)

Serial number	System studied	Measured thickness (mg/cm ²)	Coulomb barrier (MeV)	Energy studied (MeV)	Reaction channels	<i>T</i> _{1/2}	Energy (E_{γ}) (keV)	Branching ratio (%)
1	$^{12}C^{6+} + ^{128}Te$	0.92	42.2	≈42-80	128 Te(12 C,3 n) 137 Ce	13 h	254.29	11.0
2	${}^{12}C^{6+} + {}^{169}Tm$	0.50	51.5	\approx 55-85	169 Tm $(^{12}$ C,3 n) 178 Re	13.2 m	106.0, 237.0	23.4, 44.5
							351.5	5.5
3	${}^{16}\text{O}^{7+} + {}^{159}\text{Tb}$	1.80	63.8	$\approx 68-95$	159 Tb $(^{16}$ O, $3n)^{172}$ Ta	38.8 m	214.0, 318.7	55.0, 49.0
							1109.2	14.9
4	${}^{16}\text{O}^{7+} + {}^{169}\text{Tm}$	0.50	67.2	$\approx 70-95$	169 Tm $(^{16}$ O $,3n)^{182}$ Ir	12 h	126.9 273.8	34.4, 43.0
5	${}^{16}\text{O}^{7+} + {}^{181}\text{Ta}$	1.72	70.5	$\approx 75 - 100$	181 Ta $(^{16}$ O, $3n)^{194m}$ Tl	32.8 m	636.1	99.0
					181 Ta $(^{16}$ O, $3n)^{194g}$ Tl	33.0 m	636.1	15.3

TABLE I. Details of the system studied, including measured thickness of the samples, Coulomb barrier, and energy of interest

NUCLEAR AND RADIATION PHYSICS

Pre-equilibrium revival – H.I. reactions

PACE 4

PACE 4 + ALICE91 (Hybrid model)

PACE 4 + ALICE91 + ROT energy

Pre-equilibrium signatures:

- I. Presence of a <u>larger number of high-energy particles</u> as compared to the spectrum predicted by the compound nucleus model (e.g. PACE4 calculations);
- II. <u>Forward –peaked</u> angular distribution of emitted particles
- III. Slowly decreasing tails of excitation functions

NUCLEAR AND RADIATION PHYSICS

From our experience on pre-equilibrium emission

A. Corsi et al., PLB 679 (2009) 197

	E_beam			Comp	Е*
¹⁶ O + ¹¹⁶ Sn	130 MeV 250 MeV	8 AMeV 15.8 AMeV	0.76	¹³² Ce	100 206
¹⁶ O+ ¹¹⁶ Sn	192 MeV	12 AMeV	0.76	¹³² Ce	155
¹⁶ O+ ⁶⁵ Cu	256 MeV	16 AMeV	0.60	⁸¹ Rb	209
¹⁹ F + ⁶² Ni	304 MeV	16AMeV	0.53	⁸¹ Rb	240
¹⁹ F + ⁶³ Cu	304 MeV	16 AMeV	0.52	⁸² Sr	243

Light charged particles in coincidence with Evaporation Residues

KU LEUVEN

Pre-equilibrium emission and clustering

In 1968 lkeda suggested that α -conjugate nuclei are observed as excited states close to decay threshold into clusters. The original idea was introduced by Hafstad and Teller in 1938.

Extended lkeda diagram

- 1. In light nuclei at the neutron drip-line, clustering might be the preferred structural mode
- 2. Nuclear states built on clusters bound by valence neutrons in their molecular configurations might appear.
- 3. <u>These structures are mainly described by theory, but must be experimental confirmed</u>

W. Von Oertzen et al., Phys. Rep. 432 (2006) 43 - M. Freer et al., Rep. Progr. Phys. 70 (2007) 2149 Ebran et al., Nature 487 (2012) 341 - C. Beck JoP: Conf. Ser. 569 (2014) 012002

Clustering in Nuclear Structure and Dynamics

The different rotational band structures in ¹²C. The smaller slope of the Hoyle band curve with respect to the ground state band indicates a more extended structure. [Marın-Lambarri et al, PRL 113 (2014) 1].

¹²C+¹²C @ 95 MeV

Experimental and calculated 0.5 energy Dalitz-plot obtained from a 0 ¹²C+¹²C peripheral scattering reaction_0.5 [Morelli et al, JoP G 43 (2016) 4]

Pre-equilibrium and clustering?

Moscow Pre-equilibrium Model (MPM)

"Exciton Clusters" MPM A:

Griffin Exciton Model

MPM B:

Hybrid Exciton Model

Cluster PRE-formation "clustering add-on" according to H.F. Zhang

General A

ative Collisions

Neutrons: very important missing ingredient

M. Bruno et al, EPJ A 49 (2013) 128

NUCLEAR AND RADIATION PHYSICS

Experimental Campaigns

	E_beam (AMeV)	Comp	E* (MeV)
¹⁶ O + ¹¹⁶ Sn	8 15.8	¹³² Ce	100 206
¹⁶ O+ ¹¹⁶ Sn	12	¹³² Ce	155
¹⁶ O+ ⁶⁵ Cu	16	⁸¹ Rb	209
¹⁹ F + ⁶² Ni	16	⁸¹ Rb	240
¹⁹ F + ⁶³ Cu	16	⁸² Sr	243
¹⁶ O+ ³⁰ Si	7	⁴⁶ Ti	88
¹⁶ O+ ³⁰ Si	8	⁴⁶ Ti	98
¹⁸ O+ ²⁸ Si	7	⁴⁶ Ti	98
¹⁹ F+ ²⁷ AI	7	⁴⁶ Ti	103

- Same compund nucleus with different entrance channles
- Same projectile at different energies
- At the onset of pre-equilibrium processes

ACLUST2 experiment

	Pı	rojectile	Target	Grazing	Compound Nucleus					
1	Ion	E _{lab}	Isotope	θ_{lab} (deg)	Isotope	Mass	σ_{fus} (mb)	E* (MeV)	Lab. Vel.	E.R. Distrib.
		(AMeV)				Asymm.			(cm/ns)	θ_{lab} (deg)
	¹⁶ O	7.0	³⁰ Si	10.1	⁴⁶ Ti	0.30	1081	88.0	1.28	0 - 30
	¹⁶ O	8.0	³⁰ Si	8.8	⁴⁶ Ti	0.30	1070	98.4	1.37	0 - 30
	¹⁸ O	7.0	²⁸ Si	9.0	⁴⁶ Ti	0.22	1110	98.5	1.44	0 - 28
	¹⁹ F	7.0	²⁷ Al	8.9	⁴⁶ Ti	0.17	1100	103.5	1.52	0 - 28

ACLUST2 experiment

ACLUST2 experiment

ACLUST2 experiment – ER selection and target contamination

6:

0-

E_{lab}

PhD work of M. Cicerchia - LNL and Unipd

E_{lab}

0-

NUCLEAR AND RADIATION PHYSICS

KU LEUVEN

ACLUST2 experiment – ER selection

KU LEUVEN

PhD work of M. Cicerchia - LNL and Unipd

Experimental data and GEMINI

P in coincidence with ER – almost complete events (Ztot > 0.70 Zp+Zt): comparing the experimental energy distributions with Statistical calculation predictions

PhD work of M. Cicerchia - LNL and Unipd

Experimental data and GEMINI

α- particles in coincidence with ER – almost complete events (**Ztot > 0.70 Zp+Zt**): comparing the experimental energy distributions with Statistical calculation predictions

PhD work of M. Cicerchia - LNL and Unipd

Experimental data and preliminary results

¹⁶O+³⁰Si @ 111 MeV ¹⁶O+³⁰Si @ 128 MeV ¹⁸O+²⁸Si @ 126 MeV ¹⁹F+²⁷Al @ 133 MeV

PhD work of M. Cicerchia - LNL and Unipd

Multiplicity spectra

EXP MULTIPLICITY – comparison between the different reactions

COINCIDENCE with ER

FILTERED MULTIPLICITY - comparison to EXP DATA

PhD work of M. Cicerchia - LNL and Unipd

Exclusive observables - preliminary

¹⁶O+³⁰Si 8AMeV Selected channel: $^{42-x}Ar + 3\alpha + xn$ Selective channels: multiple alpha channels in coincidence with specific ER

Minimum, medium and maximum energy of the 3α event by event: Experimental spectra and comparison to Gemini.

PhD work of M. Cicerchia - LNL and Unipd

NUCLEAR AND RADIATION PHYSICS

While at higher energy ... (ACLUST experiment):

PhD work of M. Cicerchia - LNL and Unipd

NUCLEAR AND RADIATION PHYSICS

Summary

- High granularity and angular coverage allow to study pre-equilibrium processes in a detailed and exclusive way
- A link between light charged particles pre-equilibrium emission and cluster structure can be established but new observables are needed
- A systematic approach is needed, especially in terms of projectile energy

 Radioactive Ion Beams will provide a wider playground in terms of entrance channel combinations

Outlook

One possible setup

Challenges:

- Heavy beams, dynamic range
- Beam current, Count rate
- High multiplicity
- Resolution (Energy, A, Z)

Advantages

- Low thresholds
- Angular coverage

F. Gramegna¹, **M. Cicerchia**^{1,4}, T. Marchi², G. Mantovani^{1,4}, D. Fabris³, M. Cinausero¹, G. Collazuol^{3;4}, D. Mengoni^{3;4}, M. Degerlier⁵, M. Bruno⁶, M. D'Agostino⁶, L. Morelli⁶, S. Barlini⁷, M. Bini⁷, G. Casini⁷, A. Camaiani⁷, N. Gelli⁷, D. Gruyer^{7,11}, A. Olmi⁷, P. Ottanelli⁷, G. Pasquali⁷, G. Pastore⁶, S. Piantelli⁷, G. Poggi⁷, S. Valdré⁷, G. La Rana⁸, E. Vardaci⁸, I. Lombardo⁹, D. Dell'Aquila¹⁰, L. Grassi¹⁰, G. Verde⁹,¹⁰

1 INFN Laboratori Nazionali di Legnaro, Legnaro (PD), Italy.
2 KU Leuven,IKS, Leuven, Belgium
3 INFN Sezione di Padova, Padova, Italy.
4 Dept. of Phys. and Ast., Univ. of Padova, Padova, Italy.
5 Sci. and Art Faculty, Phys. Dept., Nevsehir Haci Bektas Veli Univ., Nevsehir, Turkey.
6 INFN Sezione di Bologna and Dept. of Phys. and Ast., Univ. of Bologna, Bologna, Italy.
7 INFN Sezione di Firenze and Dept. of Phys. and Ast., Univ. of Firenze, Firenze, Italy.
8 INFN Sezione di Napoli and Dept. of Phys., Univ. Federico IINapoli, Napoli, Italy.
9 INFN Sezione di Catania
10 IPN, CNRS/IN2P3, Orsay CEDEX, France.
11 GANIL, CEA/DSM-CNRS/IN2P3, Caen Cedex, France.