Two-proton radioactivity of 67Kr

Results of the 78Kr campaign (2015) at the Radioactive Isotope Beam Factory (RIKEN)

Thomas Goigoux
Centre d’Etudes Nucléaires de Bordeaux Gradignan (France)
Summary

• Introduction

• Previous studies of two-proton radioactivity

• Study of 67Kr at RIKEN Nishina Center

• Conclusions and perspectives
Two-proton radioactivity

When $S_{2p} < 0$, 2-proton emission from ground-state allowed.

- Predicted in 1960.

 \textit{Goldansky, Nucl. Phys. 19, 482-495 (1960)}

- Discovered in 2002 (^{45}Fe)

 \textit{Giovinazzo et al., PRL 89, 102501 (2002) (GANIL)}

✓ Four medium-mass cases known: ^{45}Fe, ^{48}Ni, ^{54}Zn and ^{67}Kr
Previous studies of two-proton radioactivity

Discoveries of the 2p emitters: indirect observations

- 45Fe: GANIL /GSI (2002)
- 48Ni: Indication at GANIL (2005)
- 54Zn: GANIL (2005)

- Only access to overall properties of the decay
 - Q_{2p} value
 - 2-Proton branching ratio BR_{2p}
 - Half-life $T_{1/2}$

Giovinazzo et al., PRL 89, 102501 (2002)
(similar results at GSI Pfützner et al., EPJA 14, 3, 279–285 (2002))

Counts / 20 keV

45Fe

$T_{1/2} = 4.7^{+3.4}_{-1.4}$ ms
Previous studies of two-proton radioactivity

Direct observation with Time Projection Chamber (TPC)
- Emission relative angles
- Individual energies
- Comparison with dynamic models (three-body model)

Three-body model calculations

Grigorenko et al., PRC 68, 054005 (2003)
Previous studies of two-proton radioactivity

Direct observation with Time Projection Chamber (TPC)

- Emission relative angles
- Individual energies
- Comparison with dynamic models (three-body model)

- 45Fe, 54Zn @ GANIL: CENBG TPC

- 45Fe, 48Ni @ MSU: Optical TPC

Optical TPC

CENBG TPC

Miernik et al., PRL 99, 192501 (2007)
TPC experiments status

\(^{45}\text{Fe}\) first and most studied case
- since 2002 (GANIL / GSI)
- first direct observation (2006, TPC CENBG/GANIL)
- angular correlation → structure (2007, OTPC Warsaw/MSU)

\(^{48}\text{Ni}\) few counts only
- first indication (2004, indirect) – only 1 event
- few direct observation events (2011, OTPC Warsaw/MSU)

\(^{54}\text{Zn}\) low statistics, decay scheme well established
- indirect observation (2004, GANIL)
- limited angular distribution (2011, CENBG TPC / GANIL)

Pomorski et al., PRC 83, 061303(R) (2011)

Miernik et al., PRL 99, 192501 (2007)

Ascher et al., PRL 107, 102502 (2011)
Search for new emitters

XXth Colloque GANIL

Known emitters

Possible emitters

78Kr beam

20/10/2017

Thomas Goigoux
1. **Production**
 - 78Kr primary beam: 345 MeV/A, up to 250 pnA
 - 9Be target (5 mm)

2. **Identification (PID):** $\Delta E - ToF - B\rho$

 Fukuda et al., NIM B 317B, 323-332 (2013)
1. **Production**
- 78Kr primary beam: 345 MeV/A, up to 250 pnA
- 9Be target (5 mm)

2. **Identification (PID):** $\Delta E - ToF - B\rho$

Fukuda et al., *NIM B* 317B, 323-332 (2013)

3. **Decay study**
- WAS3ABi (proton and β decay)
 - DSSSD: 1mm thick, 60x40 strips (1mm pitch)
 - Implantation of the nuclei
 - Correlation implantation-decay (in position and time)

- EURICA (γ-ray decays)
 - 12 EUROBALL clusters of 7 crystals each
 - 8% efficiency at 1.3 MeV
• ^{63}Se, ^{67}Kr and ^{68}Kr were produced and identified for the first time

• Second time for ^{59}Ge after an experiment at NSCL (4 counts)

Ciemny et al., PRC 92, 014622 (2015)

Blank et al., PRC 93, 061301(R) (2016)
Results

- ^{63}Se, ^{67}Kr and ^{68}Kr were produced and identified for the first time

- Second time for ^{59}Ge after an experiment at NSCL (4 counts)

^{59}Ge detected after an experiment at NSCL (4 counts)

$\text{Ciemny et al., PRC 92, 014622 (2015)}$

- Peak composed of 9 events at $1690(17)$ keV
- β-detection efficiency of $67(1)\% \rightarrow$ probability of missing 9 counts: 5.5×10^{-6}
- No γ observed in coincidence with the peak: 8% probability of missing the 9 events (at 511 keV).

- Global $T_{1/2} = 7.4(30)$ ms
 - $BR_{2p} = 37(14)\% \rightarrow$ 2p partial half-life $T_{1/2}^{2p} = 20(11)$ ms
 - $BR_\beta = 63(14)\% \rightarrow T_{1/2}^\beta = 10(6)$ ms (Gross theory: 11.1 ms)
Comparison with theory: decay energy

![Graph showing decay energy comparison with theory for various isotopes.]

- Good agreement with local mass models.
Comparison with theory: half-life

Three-body half-life (Grigorenko 2003)
- Pure f^2 configuration: 13.5 s
- Pure p^2 configuration: 0.28 s

Shell model’s removal amplitude (Brown)
- Pure f^2 configuration: 0.655
- Pure p^2 configuration: 0.556

Shell-model corrected half-lives:
\[
T_{1/2}(f^2) = \frac{13.5}{0.655^2} = 31.5 \text{ s}
\]
\[
T_{1/2}(p^2) = \frac{0.28}{0.556^2} = 0.9 \text{ s}
\]

\[
\frac{1}{(T_{1/2}^{2p})^{1/2}} = \frac{1}{[(T_{1/2}(f^2))^{1/2}]^{1/2}} + \frac{1}{[(T_{1/2}(p^2))^{1/2}]^{1/2}}
\]

Nucleus	Calculation (ms)	Experiment (ms)
45Fe | 2.7 | 3.76(26) |
54Zn | 1.6 | 1.98$^{+0.73}_{-0.41}$ |
67Kr | 660 | 20(11) |

Strong disagreement with experimental value
Comparison with theory

• Possible explanations:
 • Deformation
 • New calculations from Grigorenko
 ➢ Transitional case between sequential and true 2P

\[E_r : \Gamma_r \sim (0.2 - 0.3)E_r \]

\[E_r \sim 0.5E_T \]

\[E_r \sim 0.8E_T \]
Conclusions and perspectives

• A new 2P emitter was observed: 67Kr
 • Agreement with theoretical Q value
 • Disagreement with shell-model corrected half-life
 • Deformation ?
 • Transitional case between sequential and true 2P emission ?

• Perspectives
 • New TPC (ACTAR TPC collaboration) coupling to the General Electronics for TPCs (GET) → previous talk (T. Roger)
 • Specific mode for short-lived decays

 ➢ New measurement of 48Ni/54Zn (GANIL, accepted)
 ➢ Direct observation of 67Kr to get energy correlations (RIBF, accepted)
Thank you for your attention
XXth Colloque GANIL

Collaboration

- J. Agramunt, A. Algora, V. Guadilla, A. Montaner-Piza, A. I. Morales, S.E.A. Orrigo, B. Rubio, W. Gelletly, *IFIC Valencia*
- Y. Fujita, M. Tanaka, *RNCP Osaka*
- P. Aguilera, F. Molina, *Santiago de Chile*
- F. Diel, *University Köln*
- D. Lubos, *TU Munich*
- G. de Angelis, D. Napoli, *INFN Legnaro*
- C. Borcea, *IAP Bucarest*
- A. Boso, *INFN Padova*
- R.B. Cakirli, E. Ganioglu, *Istanbul University*
- G. de France, *GANIL Caen*
- S. Go, *University of Tennessee*
- B. A. Brown, *Michigan State University*