Two-proton radioactivity of ⁶⁷Kr

Results of the ⁷⁸Kr campaign (2015) at the Radioactive Isotope Beam Factory (RIKEN)

Thomas Goigoux

Centre d'Etudes Nucléaires de Bordeaux Gradignan (France)

XXth Colloque GANIL

15 - 20 October 2017

université BORDEAUX

- Introduction
- Previous studies of two-proton radioactivity
- Study of ⁶⁷Kr at RIKEN Nishina Center
- Conclusions and perspectives

XXth Colloque GANIL

When $S_{2p} < 0$, 2-proton emission from ground-state allowed.

• Predicted in 1960.

Goldansky, Nucl. Phys. 19, 482-495 (1960)

• Discovered in 2002 (⁴⁵Fe)

Giovinazzo et al., PRL 89, 102501 (2002) (GANIL) Pfützner et al., EPJA 14, 3, 279–285 (2002) (GSI)

✓ Four medium-mass cases known: ⁴⁵Fe, ⁴⁸Ni, ⁵⁴Zn and ⁶⁷Kr

N2P3

Previous studies of two-proton radioactivity

Discoveries of the 2p emitters: indirect observations

- ⁴⁵Fe : GANIL /GSI (2002)
- ⁴⁸Ni : Indication at GANIL (2005)
- ⁵⁴Zn : GANIL (2005)
- Only access to overall properties of the decay
 - Q_{2p} value
 - 2-proton branching ratio BR_{2p}
 - Half-life $T_{1/2}$

IN2P3

XXth Collogue GANIL

* CENBG 20/10/2017

Previous studies of two-proton radioactivity

XXth Colloque GANIL

Direct observation with Time Projection Chamber (TPC)

- Emission relative angles
- Individual energies
- Comparison with dynamic models (three-body model)

Three-body model calculations

Grigorenko et al., PRC 68, 054005 (2003)

5

Previous studies of two-proton radioactivity

XXth Colloque GANIL

Direct observation with Time Projection Chamber (TPC)

- Emission relative angles
- Individual energies
- Comparison with dynamic models (three-body model)
- ⁴⁵Fe, ⁵⁴Zn @ GANIL : CENBG TPC *Blank et al., NIM B, 266, 19-20, 4606–4611 (2008)*
- ⁴⁵Fe, ⁴⁸Ni @ MSU : Optical TPC *Miernik et al., NIM A, 581, 1–2, 194–197 (2007)*

Optical TPC

Miernik et al., PRL 99, 192501 (2007)

Thomas Goigoux

PMT

TPC experiments status

⁴⁵*Fe* first and most studied case

- since 2002 (GANIL / GSI)
- first direct observation (2006, TPC CENBG/GANIL)
- angular correlation \rightarrow structure (2007, OTPC Warsaw/MSU)

⁴⁸Ni few counts only

- first indication (2004, indirect) only 1 event
- few direct observation events (2011, OTPC Warsaw/MSU)

Pomorski et al., PRC 83, 061303(R) (2011)

N2P3

- ⁵⁴*Zn* low statistics, decay scheme well established
 - indirect observation (2004, GANIL)
 - limited angular distribution (2011, CENBG TPC / GANIL)

Search for new emitters

XXth Colloque GANIL

20/10/2017

IN2P3

Thomas Goigoux

8

BORDEAUX

RIBF4R1 experiment (2015)

1. Production

CNrs

IN2P3

- ⁷⁸Kr primary beam: 345 MeV/A, up to 250 pnA
- ⁹Be target (5 mm)

* CENBG

2. Identification (PID): $\Delta E - ToF - B\rho$

Fukuda et al., NIM B 317B, 323-332 (2013)

20/10/2017

XXth Colloque GANIL

RIBF4R1 experiment (2015)

XXth Colloque GANIL

Production 1.

IN2P3

- ⁷⁸Kr primary beam: 345 MeV/A, up to 250 pnA •
- ⁹Be target (5 mm)
- **Identification** (PID): $\Delta E ToF B\rho$ 2. Fukuda et al., NIM B 317B, 323-332 (2013)

Decay study 3.

- WAS3ABi (proton and β decay)
 - DSSSD: 1mm thick, 60x40 strips (1mm pitch)
 - Implantation of the nuclei
 - Correlation implantation-decay (in position and time)
- EURICA (γ -ray decays)
 - 12 EUROBALL clusters of 7 crystals each
 - 8% efficiency at 1.3 MeV

BORDEAUX

Thomas Goigoux

10

Results

- ⁶³Se, ⁶⁷Kr and ⁶⁸Kr were produced and identified for the first time
- Second time for ⁵⁹Ge after an experiment at NSCL (4 counts)

Ciemny et al., PRC 92, 014622 (2015)

XXth Colloque GANIL

Results

- ⁶³Se, ⁶⁷Kr and ⁶⁸Kr were produced and identified for the first time
- Second time for ⁵⁹Ge after an experiment at NSCL (4 counts)

Ciemny et al., PRC 92, 014622 (2015)

- Peak composed of 9 events at 1690(17) keV
- β-detection efficiency of 67(1)% → probability of missing 9 counts: 5. 5 × 10⁻⁶
- No γ observed in coincidence with the peak: 8% probability of missing the 9 events (at 511 keV).
- Global $T_{1/2} = 7.4(30) ms$
 - $BR_{2p} = 37(14)\% \rightarrow 2p$ partial half-life $T_{1/2}^{2p} = 20(11) ms$
 - $BR_{\beta} = 63(14)\% \rightarrow T_{1/2}^{\beta} = 10(6) ms$ (Gross theory: 11. 1 ms)

Decay

⁶⁷Kr

Comparison with theory: decay energy

Comparison with theory: half-life

Nucleus	Calculation (ms)	Experiment (ms)
⁴⁵ Fe	2.7	3.76(26)
⁵⁴ Zn	1.6	$1.98^{+0.73}_{-0.41}$
⁶⁷ Kr	660	20(11)

Strong disagreement with experimental value

* CENBG 20/10/2017

IN2P3

Thomas Goigoux

14

université

ORDEAUX

Comparison with theory

- Possible explanations:
 - Deformation

4

2

1.0

0.8

0.6

0.4

0.2

0.0 0.0

(arb. units)

 $dN/d\varepsilon$

- New calculations from Grigorenko
 - Transitional case between sequential and true 2P

 E_r (MeV)

.....

 $\varepsilon^{0.4} = E_{\text{core-}p} / E_T$

2.000

1.400

1.375

1.350

0.8

0.2

1.0

université

BORDEAUX

Conclusions and perspectives

- A new 2P emitter was observed: ⁶⁷Kr
 - Agreement with theoretical Q value
 - Disagreement with shell-model corrected half-life
 - Deformation ?
 - Transitional case between sequential and true 2P emission ?

- Perspectives
 - New TPC (ACTAR TPC collaboration) coupling to the General Electronics for TPCs (GET) → previous talk (T. Roger)
 - Specific mode for short-lived decays
 - ➢ New measurement of ⁴⁸Ni/⁵⁴Zn (GANIL, accepted)
 - > Direct observation of 67 Kr to get energy correlations (RIBF, accepted)

Thank you for your attention

Thomas Goigoux

BORDEAUX

Collaboration

- P. Ascher, B. Blank, M. Gerbaux, T. Goigoux, J. Giovinazzo, S. Grévy, T. Kurtukian Nieto, C. Magron, CEN Bordeaux-Gradignan
- D.S. Ahn, P. Doornebal, N. Fukuda, N. Inabe, G. Kiss, T. Kubo, S. Kubono, S. Nishimura, Y. Shimizu, C. Sidong, P.A. Söderström, T. Sumikama, H. Suzuki, H. Takeda, P. Vi, J. Wu, *RIKEN*
- J.Agramunt, A. Algora, V. Guadilla, A. Montaner-Piza, A. I. Morales, S.E.A. Orrigo, B. Rubio, W. Gelletly, *IFIC Valencia*
- Y. Fujita, M. Tanaka, RNCP Osaka
- P. Aguilera, F. Molina, Santiago de Chile
- F. Diel, University Köln
- D. Lubos, *TU Munich*
- G. de Angelis, D. Napoli, *INFN Legnaro*
- C. Borcea, *IAP Bucarest*
- A. Boso, INFN Padova
- R.B. Cakirli, E.Ganioglu, Istanbul University
- J. Chiba, D. Nishimura, H. Oikawa, Y. Takei, K. Wimmer, S. Yagi, *Tokyo University of Science*
- G. de France, GANIL Caen
- S. Go, University of Tennessee
- B. A. Brown, Michigan State University

