

β NMR on liquid media for biophysics applications:

Billion-fold increase in NMR sensitivity

Lina Pallada, CERN Fellow EP department

European Research Council

XXth Colloque GANIL, 15-20 October 2017, Amboise (France) Established

Established by the European Commission

Outline

- 1. NMR (physics and limits)
- 2. Motivation for β detected NMR at ISOLDE/CERN
- 3. β NMR (how to enhance sensitivity)
- 4. Experimental setup at ISOLDE-CERN
- 5. Challenges of β NMR when applied in liquids
- 6. β NMR studies in liquids with **Na+**
- 7. Summary

1. NMR

Nuclear Magnetic Resonance: Nuclear and Hyperfine Interactions spectroscopic technique

Nuclear Magnetic Resonance – NMR

(Zeeman splitting of nuclear levels)

$$\Delta E_{mag} = |g_I| \cdot \mu_N \cdot B + \frac{1}{2} Q \cdot V_{zz}$$

B = 0 $B \neq 0$

Nucleus Q, g_I, μ_N unknown

Biophysics (study of the medium)

Q, g_{I} , μ_{N} known

Determine the B modification by the e- environment and the V_{zz} (EFG)

How to get a signal? 1. Polarization with strong magnetic field

2. Detection of RF signal in pick up coil

1.1 NMR in chemistry and biology

Most common NMR active nuclei: ¹H and ¹³C NMR (both with I=1/2)

Other (e.g. ²³Na, ²⁵Mg, ⁶³Cu, ⁶⁵Cu and ⁶⁷Zn) low sensitivity and broad peaks due to small g and quadrupole interactions (I>1/2)

NMR Observables:

Chemical shift

Relaxation times in different environments

Typical 1H NMR spectrum of Methanol

Different **shielding** of same type nuclei→ **different chemical shifts**

Increased shielding by extranuclear electrons

1.2 NMR limitations

NMR is powerful but not sensitive especially for inorganic metal ions detection

Limitations

- 1. Small degree of polarisation (<<1%) (Boltzmann distribution), high B0 needed
- 2. Ineffective detection of resonances (RF pick up coil)
- 3. Not all elements accessible, isotopes poor/no resonance

2. Our motivation

Develop NMR technique for direct studies of **metal ion** interactions with **biomolecules** in **solutions**

Some of the **most abundant cations** in humans:

Na(I), K(I), Mg(II), Zn(II), Cu(I), Cu(II)

their right concentration is crucial for correct functioning of cellular processes

н	H ION SOURCE:														He		
Li	+ SURFACE - hot PLASMA cooled LASER									в	с	Ν	ο	F	Ne		
Na										AI	Si	Ρ	s	сі	Ar		
K	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	NI	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Т	Xe
Cs	Ba	La	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	тι	Pb	Bi	Po	At	Rn
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	112	113	114	115			
			Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
			Th	Pa	υ	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

> 70 elements produced at ISOLDE

3.1 How to enhance sensitivity

1. Hyperpolarisation with lasers (1-100%)

hyperfine structure of 28Na

magnetic sublevels Zeeman splitting

- 1. Polarize atomic spins (F)
- Laser/atoms overlap
- > circularly polarised light (σ + or σ -) and decay Δ mF = 0, <u>+</u> 1
- Repeat pumping-decaying cycle

2. Polarization of nuclear spins (I)

- Decouple atomic and nuclear spins with increasing B field
- Strong B0 field maintains the nuclear spin polarization

3.2 How to enhance sensitivity

2. β decay detection

β NMR Resonance detection

experimental β decay asymmetry loss when

RF fits with resonance frequency

3.3 Typical β NMR spectrum

Magdalena Kowalska, PhD thesis http://cds.cern.ch/record/983758?In=en

4. β NMR setup at ISOLDE

- Commissioning run November 2016 with ^{26,28}Na radioactive beams in NaF crystal
- 1st successful tests with crystals and low vapour liquids in September 2017
- Next experiments with liquids December 2017

19911

5. Challenges with biological liquids

- 1. Most liquids don't like vacuum (boiling or freezing)
- 2. Liquid drop formation and retain at implantation site

Solutions

1. Use low vapour pressure liquids compatible with 10⁻⁶ mbar

2. Use **hydrophilic substrate** for keeping the liquid for hours

3. Design and build new NMR chamber and Differential Pumping System

CAD design R. Harding and M. Walczak,

6.1 1st liquid β NMR studies with Na+

1st test run with liquids

- 1. Tested the liquid handling system
- 2. Tested the efficiency of the differential pumping system
- 3. Tested the new **RF setup** recording NMR signals on NaF crystal
- 4. Measured the relaxation times Na+ on crystal and liquid
- 5. 1st attempt to measure a NMR signal in liquids

6.2 β NMR with Na+ in DNA structures

Next step DNA G-quadruplexes with Na⁺

- Alkali metal ions (e.g Na⁺ and K⁺) important for formation, stability and structural polymorphism
- G-quadruplexes bind strongly to alkali metals and react fast (<1 s)
 - Goal
 Way and time scale Na⁺ binds to G-quadruplexes

Na+ ions bound in Gquadruplex channels

M. Kowalska et al, Proposal to the INTC, June 2017 M. Trajkovski et al, J. Am. Chem. Soc. 134, 4132 (2012)

6.3 More β NMR nuclei

What has been measured

What we plan to measure

Nucleus	cleus T1/2 I Basymme		B asymmetry	Nucleus	T1/2	Ι	Production + polarization	
	, _		2 20,000	37К	1.2 s	3/2	Quite easy	
8Li	0.84 s	2	5%	49K	1.3 s	1/2	difficult	
9Li	0.18 s	3/2				-, -		
				39Ca	0.8 s	3/2	difficult	
11Be	13.8	1/2	1%	51Ca	0.36 s		Quite difficult	
26Na	1.1 s	3	30%	58Cu	3.2 s	1	Quite difficult	
27Na	0.3 s	5/2	30%	74Cu	1.6 s	2	Quite difficult	
28Na	30 ms	1	40%	75Cu	1.2 s	5/2	Quite difficult	
					-	-,		
				75gZn	10 s	7/2	difficult	
29Mg	1.2 s	3/2	3%	75mZn	5 s	1/2	difficult	
				77gZn	2 s	7/2	difficult	
31Mg	0.25 s	1/2	8%	77mZn	1.1 s	1/2	difficult	

Summary

- \succ β detected NMR **1** billion times more sensitive than NMR
- > **Newly commissioned** setup in late 2016 at ISOLDE
- Successful tests liquid handling system, differential pumping and RF system late September 2017
- > β NMR Na⁺ in DNA coming soon!

Acknowledgements

Special thanks to the entire team!

Other collaborators ^{M. Jankowski}

- - A. Kanellakopoulos
 - A. Javaji
 - D. Zakoucky
 - **D.** Weterings
 - H. Heylen
 - M. Walczak
 - M. Madurga Flores

- P. Wagenknecht
- R. Engel
- X. F. Yang
- V. Araujo Escalona

M. Kowalska M.L. Bissell W. Gins R.D. Harding F.P. Gustafsson F. Wienholtz G. Neyens

NMR in biology

- M. Baranowski,
- L. Cerato,
- R. Grzywacz,
- V. Kocman.
- M. Kozak.
- J. Plavec,
- K. Szutkowski,
- J. Wolak

