### Influence of neutron enrichment on deexcitation properties of palladium isotopes

### Patrick St-Onge

#### Colloque Ganil 2017, October 16th, Amboise, France





• Introduction

• Level density parameter

- INDRA-VAMOS
- Results
- Conclusion

### 12.7-13.5 AMeV

<sup>34,36,40</sup>Ar+<sup>58,60,64</sup>Ni

### E494S

35 AMeV

<sup>40,48</sup>Ca+<sup>40,48</sup>Ca

**Detection System** 

000

### E503



# INDRA-VAMOS @ GANIL

#### Level density









## Fermi-gas level density expression

$$\rho_{FG}(E_x,J) = (2J+1) \left(\frac{\hbar^2}{2I}\right)^{3/2} \frac{\sqrt{a}}{12} \frac{\exp(2\sqrt{aU})}{U^2}, U = E_x - E_{rot}(J)$$
  
a = level-density parameter

 Level density parameter is extrapolated from low excitation energy experiments

- For heavy ion collisions at intermediate energies, excitation energy of primary fragments is around 3-5 MeV per nucleon
- Experimental results are necessary to evaluate the dependence with excitation energy and isospin





\* Charity, R. Temperature and isospin dependencies of the level-density parameter

#### Level density



### Variation with the isospin ?

$$FG \, model \, a \approx mA \left[ 1 - \frac{1}{9} \left( \frac{N-Z}{A} \right)^2 \right]$$

Extrapolation of level density parameter starting from stable nuclei



Fig. 1. Evolution of the level density parameter according to two different parametrisations for different Pd isotopes (see Ref.[4]). Experimental values A/8 and A/12 obtained for low and high excitation energies respectively [6] are also reported.

$$a = \alpha A / exp[\beta(N-Z)^2],$$

$$a = \alpha A / exp[\gamma (Z - Z_0)^2].$$



**Fusion-evaporation reactions** 

Constant excitation energy ≈ 2.9 AMeV

N/Z between 1 and 1.26

| Beam             | Target           | E <sub>beam</sub> | CN                | E <sub>exc</sub> | V <sub>rec</sub> | N/Z  |
|------------------|------------------|-------------------|-------------------|------------------|------------------|------|
|                  |                  | (MeV/A)           |                   | (MeV/A)          | (cm/ns)          |      |
| <sup>34</sup> Ar | <sup>58</sup> Ni | 13.5              | <sup>92</sup> Pd  | 2.889            | 1.888            | 1    |
| <sup>36</sup> Ar | <sup>58</sup> Ni | 13.3              | <sup>94</sup> Pd  | 2.882            | 1.942            | 1.04 |
| <sup>36</sup> Ar | <sup>60</sup> Ni | 13.3              | <sup>96</sup> Pd  | 2.919            | 1.901            | 1.09 |
| <sup>40</sup> Ar | <sup>60</sup> Ni | 12.7              | <sup>100</sup> Pd | 2.9              | 1.982            | 1.17 |
| <sup>40</sup> Ar | <sup>64</sup> Ni | 12.7              | <sup>104</sup> Pd | 2.879            | 1.905            | 1.26 |

#### **INDRA-VAMOS**



### INDRA

-17 rings, 336 modules

-Covers a solid angle of 90 % of  $4\pi$  sr

-First 3 rings removed for VAMOS

-LCPs identification





#### **INDRA-VAMOS**



### VAMOS

#### -CN residue identification

- -βρ settings : 0.540-0.818 Tm
- - $\theta$  settings : 0°, 1.5°, 2°, 4° and 8°

#### Operational features of VAMOS

| Horizontal acceptance              |
|------------------------------------|
| Vertical acceptance                |
| Momentum acceptance                |
| M/q resolution                     |
| Maximum rigidity $B\rho$           |
| Deflection angle $\theta_{dipole}$ |
| Flight path length                 |
| Target—quadrupole distance         |
| Angular rotation                   |

-125 to +100 mrad ±160 mrad ±5% (at 25 msr) ~0.6% 1.6 T-m 0-60° (variable) ~760 cm 40-120 cm (variable) 0-60°

![](_page_9_Figure_9.jpeg)

### VAMOS acceptance from ZGOUBI

![](_page_10_Picture_1.jpeg)

![](_page_10_Figure_2.jpeg)

![](_page_11_Picture_1.jpeg)

**Events selection** 

- Ztot>=32
- ZVtot/ZVbeam>80 %

![](_page_11_Figure_5.jpeg)

![](_page_12_Picture_1.jpeg)

### **Fusion-evaporation**

### <sup>40</sup>Ar+<sup>60</sup>Ni 12.7 AMeV

![](_page_12_Figure_4.jpeg)

![](_page_13_Picture_1.jpeg)

## Multiplicity

Z=34 <sup>36</sup>Ar+<sup>58</sup>Ni

![](_page_13_Figure_4.jpeg)

![](_page_14_Picture_1.jpeg)

![](_page_14_Figure_2.jpeg)

![](_page_15_Picture_1.jpeg)

Level density parameter from evaporation spectrum

![](_page_15_Figure_3.jpeg)

![](_page_16_Picture_1.jpeg)

Level density parameter from evaporation spectra

![](_page_16_Figure_3.jpeg)

![](_page_17_Picture_1.jpeg)

Gemini++

**Full Hauser-Feshback calculations** 

Evaporation up to <sup>10</sup>Be

![](_page_17_Figure_5.jpeg)

![](_page_18_Picture_1.jpeg)

### Sequential decay

![](_page_18_Figure_3.jpeg)

![](_page_19_Picture_1.jpeg)

• Coupling of INDRA and VAMOS gives unique results

• Mass identification of the residue with VAMOS gives new ways to study de-excitation properties

• Thank you for your attention !