Spectroscopy of ¹⁹F and its impact on the production of ¹⁵N in core-collapse SNe

- In some meteoritic grains, spatial correlation of ¹⁸O and ¹⁵N
 - Signature of core-collapse supernovae
 - Production by explosive helium burning during the shockwave
 - Excess of ¹⁵N is a potential signature that the grain is of SN origin
- Sensitivity studies have found that the ¹⁸F(n,p)¹⁸O and ¹⁸F(n,α)¹⁵N reactions are important in the overall production of ¹⁵N
 PRC 89 025807, Bojazi and Meyer

Fig 1 from Astro J Lett 754 L8

Figure from PRC 89 025807, Bojazi and Meyer

- Helium-burning shell
 - Hydrogen all consumed
 - He->C/O
 - Have ${}^{14}N(\alpha,\gamma){}^{18}F$ producing ${}^{18}F$, decays into ${}^{18}O$
- Stellar explosion -> shock in outer layers
 - Neutron production through
 ¹⁸O(α,n) reactions
- Neutrons produced can start to react with ¹⁸F

- Two possible reactions
 - ¹⁸F(n,α)¹⁵N making the ¹⁵N
 which is found in the grains
- Second reaction is a proton source, produced protons can react again
 - $^{18}O(p,\alpha)^{15}N$ making more ^{15}N
 - $^{\circ}$ ¹⁵N(p, α)¹²C destroying ¹⁵N
- Also have other possible reactions e.g. ¹⁴N(n,p) producing protons, ¹⁵N(α,γ) destroying ¹⁵N

Figure from PRC 89 025807, Bojazi and Meyer

- Suppressing the ¹⁸F(n,α) reaction reduces the production of ¹⁵N by a factor of 4
- If the ¹⁸F(n,p) reaction isn't active, the production of ¹⁵N *increases* by a factor of 2
 - Lower production from ¹⁸O(p,α) but lower destruction via ¹⁵N(p, α)
- Stronger ¹⁸F(n,α) suppresses
 ¹⁸F(n,p) and so not only produces more ¹⁵N but also decreases the destruction by ¹⁵N(p,α)

Figure from PRC 89 025807, Bojazi and Meyer

There's competition between the (n,α) and (n,p) channels! ¹⁸F(n,p) can be suppressed because of strong ¹⁸F (n,α) !

TALYS calculations of ¹⁸F+n reactions

- 5e+08 ¹⁸F(n,α) 4e+08 s^{-1} $N_{\rm A} < \sigma v > / \ {\rm cm}^3 \ {\rm mol}^{-1}$ 3e+08 2e+08 ¹⁸F(n,p) 1e+082 4 6 8 10 T/GK
- Need information on the strength of ¹⁸F(n,α) and ¹⁸F(n,p) reactions
 - Direct measurements of this are hard - can't make ¹⁸F or neutron target easily (at all?)
 - Indirect information on proton and α-particle BRs can help to constrain the relative strengths (which is the most useful information)
- Previous rates from statistical models (which don't work very well in this region - α clustering in ¹⁹F)

Experimental study of ¹⁹F for ¹⁸F+n reactions

The Experiment - ¹⁹F(p,p')¹⁹F

- Coincidence experiment Enge spectrograph + silicon detectors
 - First, ¹⁹F(p,p')¹⁹F reaction scattered proton into Enge
 - Using ^{nat}LiF target of 85 μ g/cm² on nat carbon backing
 - Enge has resolving power of E/dE = 1000 -> 7 keV instrinsic resolution
 - Solid angle of 1.3 msr
 - Resulting resolution is ~16 keV FWHM target thickness effect
 - Second, charged-particle decay of excited ¹⁹F state observed in array of silicon detectors - Micron W1s cover 14% of solid angle

Position -> E_x PID by energy loss

Results - Singles (Inclusive measurement)

- The problem with singles:
 - Very high background
 - Possibly instrumental
 - Possibly physical could be a contribution from decay protons from ¹⁹F excited states
- Whatever the source of the background, it makes analysis of the ¹⁹F results difficult
- Coincidence results can assist in analysing the singles data
- Neutron separation energy = 10.432 MeV

Results - Coincidence Spectra

- Coincidence 2D spectra generated from the calibrated focal plane (i.e. position -> Brho -> Ex) vs the silicon energy corrected for kinematics
 - Convert the system to the Q-value - identification of decay loci easier + contaminants obvious
- α₀ and p₀ loci are very clear but p₀ locus has an overlap with ¹²C
 α-decay locus
 - Can distinguish with timing information

Results - alpha decay to ¹⁵N ground state

- High level density
- There are inconsistencies in the literature which have made analysis difficult but now have relatively good consistency with *some* known states
- Alpha-particle decaying states exist close to the neutron threshold
 - Can have ¹⁸F(n,α) reactions at lower temperatures

Results - proton decay to ¹⁸O ground state

- A few strong states below threshold
- First strong proton-decaying state is at 10.5 MeV
 - ~68 keV above the neutron threshold
- There's a background in this spectrum from other decay channels which satisfy kinematic conditions but this is accounted for and doesn't change the lack of proton strength below this state

The important bit

- The first significant state (above the neutron threshold) with a strong proton decay is 68 keV above the neutron threshold
 - kT = 68 keV -> ~0.8 GK
- The ¹⁸F(n,p)¹⁸O channel isn't strong at lower temperatures as it's suppressed by ¹⁸F(n,α)
 - The production of ¹⁵N is thus likely strongly enhanced over the current models due to changes in the reaction rates

Modified figure from PRC 89 025807, Bojazi and Meyer... green line is at 0.8 GK, approx energy of first strong $^{18}F(n,p)$ resonance

Summary and future prospects

- ¹⁸F(n,p) reaction is much weaker than thought from statistical models
- Suggests that the production of ¹⁵N is enhanced
 - Based on sensitivity study, could be twice the 'expected' yield just due to weakness of ¹⁸F(n,p)
- Next step: match all of the resonances observed in previous measurements with those in the present study + collate the nuclear data
- Then use these data to calculate new rates for ¹⁸F(n,p) and ¹⁸F(n,α) + observe astrophysical impact

Comparison of ${}^{18}O(p,\alpha_0)$ data at 90 degrees lab angle from Gorodetzky et al. Journal de Physique, 1963, 24 (11) with data from the present experiment

Collaborators

P. Adsley, F. Hammache, N. de Séréville, M. Assié, D. Beaumel, M.
 Chabot, M. Degerlier, C. Delafosse, F. Flavigny, A. Georgiadou, J.
 Guillot, V. Guimarães, A. Gottardo, I. Matea, L. Olivier, L. Perrot, I.
 Stefan (Institut Physique Nucléaire d'Orsay)

A. Laird, S. Fox, R. Garg, S. Gillespie, J. Riley (University of York)

J. Kiener, A. Lefebvre-Schuhl, V. Tatischeff (CSNSM-Orsay)

I. Sivacek (ASCR-Rez, Czechia)

Branching Ratios

- Can look at relative branchings to get information on the relative strength of the reactions
- The absolute branchings can constrain the reaction rate better
 - Can combine with available information on total (or partial widths) known for states from other measurements when available
 - Infer neutron width and calculate properties of resonances
 - Absolute branchings not corrected for all solid angle effects

