

Olivier LOPEZ, LPC Caen, France (INDRA-FAZIA)

XXth Colloque GANIL, Amboise

Outlines

Latest results from INDRA

- \succ Isospin diffusion vs chemical equilibrium
- > Transport properties above E_{Fermi} : σ_{NN}^* and N/Z equilibration
- \blacktriangleright Fragment formation dynamics : spinodal instabilities in asymm. matter
- Improving INDRA identification : yes we can...

INDRA+FAZIA experimental program @ GANIL

 \blacktriangleright Thermo. : Phase diagram for asymmetric matter (isospin *d.o.f*).

EOS : Density dependence of SE (status 2017)

 \blacktriangleright Transport : Isovector properties of NN interaction

Latest results from INDRA

Density Dependence of Symmetry Energy

Fermi-energy HI collisions

Chemical equilibration : Isospin diffusion and migration

- **Chemical equilibrium** for $d, t, {}^{3}He, \alpha, {}^{6}He$ in central collisions but ${}^{3}He$ ratios are **different** and never show chem. equilibrium

 $^{136}Xe + ^{112}Sn \equiv ^{124}Xe + ^{124}Sn$

Transport properties : in-medium NN cross section (I)

Best param. in the Fermi energy domain : *P. Danielewicz, Acta. Phys. Pol. B* **33**, 45 (2002) *Tempered* cross section from unitarity limit σ_0

 $\sigma_{_{NN}}^{*} = \sigma_{_{0}} \tanh(\sigma_{_{NN}}^{free} / \sigma_{_{0}})$ with : $\sigma_{_{0}} = v \rho^{-2/3}$ and : v = 0.4 - 0.8

MSU analysis on asymmetric systems : LMT between 20A – 120A MeV *E . Colin et al., PRC* **57**, *R1032 (1998)*

INDRA meta-analysis for symmetric systems between 30A – 100A MeV O. Lopez et al., PRC **90**, 064602 (2014)

In-medium NN cross section (II)

B. Brent and P. Danielewicz, [nucl-th] arxiv:1612.04874v1 (2016)

observable	reaction system	energies [MeV]	best cross section reduction					
LMT	$^{40}\mathrm{Ar}+\mathrm{Cu}$	17-115	Tempered w/ $0.4 \le \nu \le 0.6$					
LMT	$^{40}\mathrm{Ar}+\mathrm{Ag}$	17-115	Tempered w/ $0.4 \le \nu \le 0.6$					
LMT	$^{40}\mathrm{Ar} + \mathrm{Au}$	27-115	Tempered w/ $\nu = 0.8$					
varxz	Au + Au	90-1500	Tempered w/ $\nu=0.8$ or Rostock					
varxz	Ca + Ca	400-1500	Tempered w/ $0.4 \le \nu \le 0.8$					
R_z	$^{96}\mathrm{Zr}+^{96}\mathrm{Ru}$	400	Tempered w/ $\nu = 0.8$, Rostock, or Fuchs					
	(and inverse)							
Recoil velocity (E,A)		Rapidity varia	ances (E,A) Isospin tracer (Z,A)					
$LMT = \left\langle \cdot \right\rangle$	$\left. \frac{v_{\parallel}}{v_{\rm c.m.}} \right\rangle$	$varxz = \frac{1}{2}$	$\frac{\Delta y_x}{\Delta y_z}, \qquad \qquad R_Z = \frac{2 \times Z - Z^{\mathrm{Zr}} - Z^{\mathrm{Ru}}}{Z^{\mathrm{Zr}} - Z^{\mathrm{Ru}}}$					
INDRA								
INDRA+FAZIA								

In-medium NN cross section (II)

Spinodal decomposition: isoscalar vs isovector instabilities

- Isospin dependence of the phase diagram ?
- Correlations with masses (isocalar) and isospin (isovector)

XXth Colloque GANIL, October 15-20, 2017, Amboise, France

Spinodal decomposition: isoscalar vs isovector instabilities

- Equal-sized fragments are over-produced
- Statistical confidence is **largely enhanced** (10x statistics) to overcome the 5σ limit ...

Improving isotopic identification for INDRA Si-CsI telescopes ...

From Si-CsI raw matrices, get Z (grid) and From CsI light output integration, get L_{exp}

- Start with an initial **A**_o value (mass tables)
- From the calibrated ΔE silicon and $A \rightarrow E_{csl,0}$
- From Light-Energy formula*, then estimate L_o

- Iterate on
$$A \rightarrow E_{csl,i} \rightarrow L_i$$
 until $L_i = L_{exp}$

Isotopic identification Z<12 Isotopic estimation (±3) up to Z=54 ...

O. Lopez et al, arXiv:1707.08863 Submitted to NIM A

INDRA + FAZIA Experimental program at GANIL

Phase diagram of Nuclear Matter

Microscopic Description of Nuclei

Self-consistent Mean-Field calculations are probably the only possible framework to understand the structure of medium and heavy nuclei.

Direct link to EOS and Symmetry Energy

$$E = \langle \psi \mid H \mid \psi \rangle$$
$$H = \langle \phi \mid H_{eff} \mid \phi \rangle$$

 $H = E[\rho]$

Energy-Density Functionals

Symmetry Energy around ρ_0

$$E/A (\rho, \delta) = E/A (\rho, 0) + \delta^2 \cdot S(\rho)$$
$$\delta = (\rho_n - \rho_p) / (\rho_n + \rho_p) = (N-Z)/A$$

- Constraints for Astrophysics (NS) and for laboratory experiments
- Needed for transport models and nuclear matter studies (Thermodyn.)
- > Link to the **NN interaction** (isovector) in the nuclear medium $(m_{n,p}^*)$
- **Density dependence for SE**

Symmetry Energy around ρ_0 (II)

Latest evaluation for $E_{svm}(\rho_0)$ and slope $L(\rho_0)$

Today (2017) : $E_{sym}(\rho_0) = 31.9 \pm 2.5 \text{ MeV} \rightarrow 8\%$ uncertainty $L(\rho_0) = 55.3 \pm 28.1 \text{ MeV} \rightarrow 51\%$ uncertainty $K_{sym}(\rho_0)$ not constrained at all

Tensor effects : SRC in ground state nuclei

- due to the tensor component
- mainly *p-n* SRC (> 90%)
- SRC are ehanced in N=Z nuclei

Short-Range Correlations in nuclei

- *SRC* is the result of the **tensor part** of the *NN* interaction
- Nucleon momentum distribution at high *p* present a tail α 1/p⁴
- Mainly **proton distribution** are affected by this effect, **20 times more** than neutrons
- 20 % of protons in nuclei experience SRC
- Modify the uncorrelated Fermi gas picture, in terms of **Fermi energy for protons/neutrons**

- Change the sharing between kinetic and potential parts of the symmetry energy

Uncorrelated (no SRC)

$$\begin{split} & \mathsf{E}_{\mathsf{sym}}^{\mathsf{kin}} \approx \mathbf{12} \; (\rho / \rho_0)^{2/3} \\ & \mathsf{E}_{\mathsf{sym}}^{\mathsf{pot}} \approx \mathbf{20} \; (\rho / \rho_0)^{\gamma} \; \text{ with } \gamma = \mathbf{0.6-1} \end{split}$$

E_{sym}(ρ₀) ≈ 32 MeV L_{sym}(ρ₀) ≈ 50 - 70 MeV

Soften DDSE ...

O . Hen et al., PRC 91, 025803 (2015) $L_{sym}(ρ_0) ≈ 32 \text{ MeV}$ ≈ 30 - 55 MeV

Correlated (SRC) $E_{sym}^{kin} \approx -5 (\rho/\rho_0)^{2/3}$ $E_{sym}^{pot} \approx 37 (\rho/\rho_0)^{\gamma}$ with $\gamma = 0.35-0.6$ $E_{sym}(\rho_0) \approx 32 \text{ MeV}$

Density Dependence of Symmetry Energy : neck + QP

Fermi-energy HI collisions

Density Dependence of Symmetry Energy : neck

Density Dependence of Symmetry Energy : QP

- Isoscaling: observed scaling law of fragment (N,Z) production for two reactions involving different isotopes (ex. ^{40/48}Ca, ^{124/136}Xe)
- Isoscaling: can be related to the symmetry energy
- Relationship: different parametrizations from macro/microscopic approaches

3D Lattice-Gas Model: the isotopic distribution of the largest cluster in each event is more sensitive to the symmetry energy of the fragmenting system as compared to previous studies using mostly Light or Intermediate Mass Fragments (Z=1-8)

Example : ^{40,48}Ca+⁴⁰Ca @ 35A - 50A MeV

- Measure the isoscaling law of the largest fragments for selected impact parameters
- Measure the density of the fragmenting system through fragment-fragment correlations
- Extract the density dependence of the symmetry energy as presented here

G. Lehaut et al. (INDRA coll.), Phys. Rev Lett. 102, 142503 (2009)

Vaporization : a bridge between nuclear physics and astrophysics

Unique set of experimental data to constrain theoretical descriptions. Dedicated calculations will be done with the recently proposed extended NSE model, which is optimized to study equilibrium properties of subsaturation exotic matter to constrain the symmetry free energy far from saturation ($\rho << \rho_0$)

Shear viscosity and transport quantities : *perfect fluid limit*

The **shear viscosity** η measures the **amount of dissipation** in a fluid ; in Kinetic Theory, it is related to the **rate of momentum transport** by quasi-particles in the medium.

Classically, it is defined in terms of the friction force per unit area S created by a shear flow characterized by a transverse flow gradient ∇v_z : $F/S = \eta \nabla v_z$

In Kinetic Theory, we have : $\eta = 1/3 m < v > \rho \lambda^*_{NN}$

Superfluidity when $\eta/s << 1 -$

Fluid	P (Pa)	T (K)	η (Pa s)	$\eta/n~(\hbar)$	$\eta/s~(\hbar/k_{\rm B})$
H ₂ O	0.1×10^{6}	370	$2.9 imes 10^{-4}$	85	8.2
⁴ He	0.1×10^{6}	2.0	$1.2 imes 10^{-6}$	0.5	1.9
H_2O	22.6×10^{6}	650	$6.0 imes10^{-5}$	32	2.0
⁴ He	0.22×10^{6}	5.1	1.7×10^{-6}	1.7	0.7
⁶ Li ($a = \infty$)	12×10^{-9}	23×10^{-6}	$\leqslant 1.7 imes 10^{-15}$	≤1	≼ 0.5
QGP	88×10^{33}	2×10^{12}	$\leqslant 5 \times 10^{11}$		≼0.4

T. Schäfer and D. Teaney, *Rep. Prog. Phys.* **72**, 126001 (2009) «Nearly perfect fluidity : from cold atomic gases to hot quark gluon plasmas »

 η /s is limited at low values (most perfect fluid) by the quantum universal ratio limit η /s = 1/4 π

What is the viscosity of the nuclear matter in the Fermi energy domain ? Can it be used to probe the LG phase transition ?

Shear viscosity in nuclear matter : how far from the *perfect fluid* ?

IQMD calc. for ¹²⁹Xe+¹¹⁹Sn central collisions : Entropy density with momentum-dependent Skyrme interaction (K=220 MeV)

H. L. Liu, Y. G. Ma, A. Bonasera, X. G. Deng,O. Lopez, and M. Veselsky,To be published in PRC

Universal lower limit $1/4\pi$

Boltzmann-Uehling-Uhlenbeck simulations *RHIC* energies : *Glauber MC* model

B. Brent and P. Danielewicz, [nucl-th] arxiv:1612.04874v1 (2016)

Shear viscosity and phase transition

Coupling FAZIA demonstrator with INDRA

FAZIA demonstrator (est. 2016), 12 blocks :
192 20x20mm² high-quality Si-Si-CsI telescopes
from 2 to 14 deg. + customized full digital electronics

Between 2-14 deg.

FAZIA geom. acceptance 82% (90%) Granularity x2 as compared to INDRA

Isovector dependence of the nuclear interaction and EOS

- > In-medium properties of clusters : clustering @ low density (i.e. α -Hoyle states), cluster emission in n-rich/poor systems
- Study of **EOS at low density** : vaporization and cluster mixing with nucleon gas
- Density dependence of Symmetry Energy: isospin diffusion in DIC, isoscaling using the largest fragment, neutron enrichment in the neck (migration/diffusion)
- Transport properties @ Fermi energy : NN collisions in the isovector sector, isospin tracer, short-range correlations in nuclei, effective masses, and also : radial flow, viscosity ...

The End ?

The Beginning !

Stopping power in central HIC

Nucleon mean free path in nuclear medium

→ $\lambda_{NN} \ge R$: complete stopping and thermalization not achieved... J. Su and F.S. Zhang, PRC 87, 017602 (2013) [AMD]

Contradictory findings with SMF by E. Bonnet, et al., PRC 89, 034608 (2014)

FAZIACor status for Identification

FAZIACor : in-medium cluster correlations

Online results are promising : in-medium clustering for light nuclei, here ²⁰Ne and ³²S with 3- α correlation (¹²C*)

0⁺ _____ 0

Head-on collision

- > Linear behavior as a function of E_{cm} : at $E_{cm}/A=10$ MeV, we get : $\varepsilon_{rad}=1.5-2$ AMeV but some discrepancies appear ...
- Radial flow is obtained from multifragmentation models (SMM-like) : freeze-out volume

\rightarrow model-independent estimation for radial flow is needed...

Radial flow : toward an experimental determination

From central collisions at same E* or T :

- Same fragmentation pattern:
 Partitions and multiplicities are similar
- Differences for the Kinetics :
 - \rightarrow Radial flow ε_{rad}
 - → Experimental determination of ε_{rad} for Z>4 with isotopic resolution (A)

Proposed experiment

- Cover the Fermi energy domain
- \succ Benefit from the maximal N/Z with stable beams at E_{fermin}
- >Also study the **isospin diffusion/migration** in dissipative collisions

^{124,129,136}Xe @ 30, 39, 50 AMeV on ^{40,48}Ca and ^{nat}Sn targets

- Coulomb : $< E_{coul}(Z) > \alpha Z (Z_s Z_o) (\rho / \rho_o)^{1/3}$
- Thermal : **<***T***>** : thermal component, no dep.
- Radial : $\langle E_{rad}(A) \rangle = \langle \varepsilon_0 \rangle$. A where $\langle \varepsilon_0 \rangle$ is the average radial flow component

Radial flow : toward an experimental determination

SMM Calculations

Z=90, E*/A=7.5 MeV $\rho = \rho_0/3$

Courtesy of R. Bougault

Carbon isotopes

Even better for higher species ?...

FAZIASym : Isospin diffusion for ⁴⁸Ca QP

Only inclusive events ... preliminary !

FAZIASym : Identification using AMI grid (II)

Short Range Correlations

> Features of SRC:

- Nucleons can stay at closer distance (<1 fm Strong attraction and repulsion
- Nucleons can carry much higher momenta
 Exceed the limit of IPSM k>k_F
- Zero total momentum:

A real ground state, not an excited state.

Break-up these correlated nucleons:

Detect a nucleon with much higher momentum;

<u>Momentum distribution:</u> \rightarrow All possible momentum values that nucleons carry inside the nucleus.