Fission in Inverse Kinematics at GANIL

M. Caamaño, F. Farget, D. Ramos, C. Rodríguez, O. Delaune, and many more... (U. Santiago de Compostela, GANIL, etc.)

)-

-0

Shell effects shape the landscape

0--0

Confirmed/consistent with a number of observables

Inverse kinematics at VAMOS/GANIL:

Production and fission from fusion and multi-nucleon transfer

F. Farget et al.

Inverse kinematics at VAMOS/GANIL:

Production and fission from fusion and multi-nucleon transfer

F. Farget et al.

to VAMOS

A set of revisited and new observables

M. Caamaño (USC)

 \square

A set of revisited and new observables

Fragment N excess (N/Z)

Fragment N excess (N/Z)

$$\langle A_1^* \rangle = A_{\rm FS} \frac{\langle V_2 \gamma_2 \rangle}{\langle V_1 \gamma_1 \rangle + \langle V_2 \gamma_2 \rangle}, \quad \langle A_2^* \rangle = A_{\rm FS} - \langle A_1^* \rangle.$$

6

M. Caamaño (USC)

.

>

access to the distance between fragments !!

 $\circ \bigcirc^{\circ}$

What else?

J. Töke et al., NPA 440, 327 (1985)

The case of high-energy and quasi-fission ²³⁸U @ 5.9 AMeV + [²⁶Mg, ²⁷Al, ¹¹B, ⁹Be] at VAMOS/GANIL

· O-

Fission in Inverse kinematics at GANIL.

In summary...

 $PE = -TXE + E^{*,def}$

New access to scission; the case of ²⁴⁰Pu (9 MeV)

and a sneak peak of the potential landscape:

New access to scission; the case of ²⁴⁰Pu (9 MeV)

M. Caamaño (USC)

6

What else?

The case of ²⁵⁰Cf (42 MeV)

- Pre-saddle emission?
- No dissipation?

Still shells?

C. Rodríguez Tajes et al., PRC 89 (2014) 024614

Targetlike nucleus	E_{γ} (keV)	$\mathbf{P}_{\gamma}^{\mathrm{expt}}$
¹² C	4439	0.14 ± 0.03
$^{11}\mathbf{B}$	2125	0.12 ± 0.02
¹⁰ Be	3368	0.14 ± 0.04

Inverse kinematics: A window to new observables in fission.

60 r

²³⁸U

$$TXE = E^{*,Bf} + E^{*,dis} + \sum_{i=1}^{2} E_i^{*,def}$$
$$E^{*,dis} = F^{dis} \left(TXE - E^{*,Bf} \right)$$
$$\sum_{i=1}^{2} E_i^{*,int} = E^{*,Bf} + E^{*,dis}$$
shared according statistical eq.

$$TXE = \sum_{i=1}^{2} Q_i^n + v_i \varepsilon_i + E_i^{\gamma}$$
$$E_i^{\gamma} = Sn_i^{\text{post}} \frac{v_i}{v_1 + v_2}$$
$$E_i^* = Q_i^n + v_i \varepsilon + E_i^{\gamma}$$
$$E_i^{*,\text{def}} = E_i^* - E_i^{*,\text{int}}$$

New access to scission; the case of ²⁴⁰Pu (9 MeV)

access to the distance between fragments !!

 $r_0 A_1^{1/3} (1 + \sqrt{5}/(4\pi) B_1) = r_0 A_2^{1/3} (1 + \sqrt{5}/(4\pi) B_2)$

5

A liquid drop behaviour...

... with surprises

N. Bohr, J.A. Wheeler, PR 56, 426 (1939)

E.T. Booth et al., PR 55, 982 (1939)

IX. ASYMMETRIC FISSION

It is somewhat tempting to associate the existence of the closed shells of 50 and 82 neutrons with the dissymmetry of masses encountered in the fission process. U²³⁵ contains 143 = 82 + 50 + 11

M.G. Mayer, PR 74, 235 (1948)

New access to scission; the case of ²⁴⁰Pu (9 MeV)

Fragment N excess (N/Z)

500 - 400

 $\Delta M/M \approx 0.6 \cdot 10^{-2}$

 $\Delta Z/Z \approx 1.5 \cdot 10^{-2}$

Fragments identified from M ≈ 90 to M ≈ 140 Fragments identified from $\mathbf{Z} \approx \mathbf{36}$ to $\mathbf{Z} \approx \mathbf{59}$ in 600 MeV range