β-decay study of neutron rich nuclei with the Total Absorption Spectroscopy method

Loïc Le Meur
for the TAS collaboration
Outline

• Context and motivations for β decay studies and TAS experiment

• Description of TAS method and analysis

• Experimental setup at Jyväskylä

• Preliminary results

• Conclusions and outlooks
Context

→ Nuclear structure
 - Neutron-skin
 - Pygmy Resonance
 - Deformation parameter
 - Equation of state of neutron matter

→ Astrophysical phenomena : r-process
 - Rapid neutron capture
 - Knowledge of capture/decay competition
 - Need for predictive microscopic models

→ Nuclear reactor
 - Decay heat :
 - Residual power (∼8% of nominal power)
 - Reactor safety
 - Predictive method = Summation of all the fission product contributions

- Antineutrino spectra :
 - Fuel monitoring for non-proliferation (ν flux depends on fuel composition)
 - Neutrino fundamental physics

Systematic discrepancies between measurements and calculations

Improve knowledge of beta-decay properties
Motivation: Why a TAS experiment?

→ The Pandemonium effect

- Weak point of the Ge detectors (mainly used for β-decay study)

 - Causes:
 - Very low geometrical and intrinsic efficiency

 - Consequences:
 - Overestimation of the feeding of the low energy levels

Solution: Total Absorption Spectroscopy

TAS method

→ A complementary approach

- **Germanium detectors**: **High resolution** single γ-ray detection
- **TAS detectors**: **High efficiency** + $4\pi = \text{Calorimeter}$ γ-ray cascade detection

- **Advantages**:
 - Almost 100% detection efficiency
 - Direct access to the β intensity distribution I_β
 - Much less sensitive to the Pandemonium effect
- **Drawbacks**:
 - Deal with a complex analysis
 - Lower energy resolution than Ge detectors
 - Detailed knowledge of the daughter nucleus
Data analysis

- Aim of TAS analysis = β feeding

→ Solve the Inverse Problem

\[d_i = \sum_j R_{ij} \cdot f_j \]

\(d_i \): Experimental data

\(R_{ij} \): Detector response matrix
- branching ratio matrix
- γ-response and β-response

\(f_j \): beta feeding

→ Requires clean spectrum

\(^{99}\text{Y} + \text{Contaminants}\)

\[I_\beta = \frac{\sum f_\beta}{\sum f_k} \]

\[S_\beta(E) = \frac{I_\beta(E)}{f(Z, Q_\beta - E) T_{1/2}} \]

Beta feeding Beta Intensity

Solved by an iterative procedure based on the Bayes Theorem

Comparison with theoretical models
Experimental setup at Jyväskylä \(^{142}\text{Cs}, ^{99}\text{Y}, ^{138}\text{I}, ^{96,96m}\text{Y}\)

- **DTAS** = 18 crystals of NaI(Tl)
 - \(\sim 90\%\) total efficiency for a 1 MeV gamma
 - \(\Delta E/E \sim 5\%\) at 1.3 MeV
- **\(\beta\) detector** = plastic detector
 - In coincidence with \(\gamma\) \(\rightarrow\) suppression of the background
 - 30\% detection efficiency
- **HPGe detector**
 - Allow identification of possible contaminants coming from the decay chain

Why Jyväskylä IGISOL-4 facility?

→ Because of the JYFLTRAP, a double Penning Trap
→ Mass resolution of \(\delta m/m \sim 10^{-6}\)
→ A very pure beam is needed
Preliminary results for the 142Cs: Motivations

→ Nuclear structure

✓ Possible neutron-skin in the vicinity of the 132Sn
✓ Neutron orbital influence

→ Astrophysical phenomena: r-process

✓ Pygmy resonances
✓ β-decay: new probe below and above S_n
 (M. Scheck, PRL 116, 132501, 2016)

→ Nuclear reactor

✓ Priority 1 as contributor to antineutrino spectra
 + IAEA – INDC (NDS) 0676)

✓ Priority 3 as contributor to reactor decay heat
Preliminary results for the 142Cs

Difference between Input 1 and Input 2:

- γ-strength E1 and M1

 Generalized Lorentzian (GL) \[(J. \text{ Kopecky and M. Uhl, Phys. Rev. C 41 (1990) 1941) \]

Preliminary results for the 142Cs

→ At low energy: lower value of β-feeding
Ground State feeding = 47%(Input 1) 44%(Input 2) 56%(ENSDF)

→ At high energy: continuous part beyond 3.5 MeV, missing in the ENSDF database

Only 3 values above 3.5 MeV in ENSDF

I$_y$ above S$_n$ study on-going

PANDEMONIUM EFFECT
Preliminary results for the 142Cs

Multiplicity study used to:
- verify/improve branching ratio matrix
- obtain a more detailed comparison between different sets of input parameters
- may constrain models

- D1M strength overestimate M1 above 1.5 MeV and underestimate it below
- Better reproduction with GL strength but needs improvement

Study ON-GOING
Conclusion and outlook

TAS experiment:
✓ An alternative method compared to High Resolution experiments...
✓ ... which gives additional data to complete nuclear databases, with a potential non-negligible impact on:
 ➤ Decay heat and $\bar{\nu}_e$ spectra calculations
 ➤ Constraints on model dedicated to calculate $T_{1/2}$, deformation and P_n values
 ➤ Nuclear structure and r-process modeling

Current analysis:
^{142}Cs, ^{99}Y, ^{138}I, $^{96,96m}\text{Y}$

New feedings: nucleus affected by the Pandemonium effect

Result $\rightarrow I_\beta$ ➤ Calculate the beta strength to compare with theoretical models.

✓ Multiplicity study: may to use as a tool to constrain the different models
Thank you!

TAS Collaboration:

U. Surrey (UK) : W. Gelletly

IGISOL Jyvaskyla (Finland) : H. Penttilä, Äystö, T. Eronen, A. Kankainen, V. Eloma, J. Hakala, A. Jokinen, I. Moore, J. Rissanen, C. Weber

CIEMAT Madrid (Spain) : T. Martinez, L.M. Fraile, V. Vedia, E. Nacher

BNL New-York (USA) : A. Sonzogni

Istanbul Univ. (Turkey) : E. Ganioglu

Theoretical Collaboration:

CEA, DAM, DIF - Bruyères-le-Châtel (France) : S. Péru

ESNT, DSM, Irfu, CEA - Saclay (France) : M. Martini