The Solid state programme at ISOLDE

Karl Johnston

Oct 16th 2017: 50 years of beams at ISOLDE

Nuclear chart for ISOLDE

Key features of RIB for materials research

SENSITIVITY / TRACEABILITY:

Very low concentrations of radioactive impurity atoms in **materials**, **surfaces or interfaces can be detected**.

SELECTIVITY:

Element transmutation due to radioactive decay add chemical selectivity to "classical" spectroscopy techniques, e.g., photoluminescence, resistivity, deep level transient spectroscopy...

199192

PRODUCTION / AVAILABILITY

Element and isotope Variety, Intensity and Purity

NANOSCOPIC SCALE INFORMATION:

Hyperfine interactions (ME, PAC, β -NMR) local information on magnetic and electric neighborhood e-, β -, β +, α Emission Channeling direct and precise lattice site location.

Applying radioactivity to solid state physics

ISOLDE table of elements

Workhorse probes:

¹¹¹Cd, ¹⁹⁹Hg, ¹¹⁷Cd, ⁵⁷Mn, ⁷³As

New promising probes:

⁶⁸Cu, ¹⁴⁹Gd, ¹⁷²Lu, ¹⁵¹Gd, ¹⁹⁷Hg

Isotopes of this element used for solid state physics or life science

Offline labs at ISOLDE: B. 508

Staying relevant: Materials studied at ISOLDE

Experimentally evaluating the origin of dilute magnetism in nanomaterials

L M C Pereira

KU Leuven, Instituut voor Kern- en Stralingsfysica, 3001 Leuven, Belgium

Hyperfine techniques are particularly successful in unravelling subtle magnetic behaviour in materials

Fig. 3. Computed values of the Curie temperature $T_{\rm C}$ for various p-type semiconductors containing 5% of Mn and 3.5 \times 10²⁰ holes cm³.

Dietl et al, Science 287 (2000) 1

Is it possible to create magnetic semiconductors that work at room temperature? Such devices have been demonstrated at low temperatures but not yet in a range warm enough for spintronics applications.

Next generation semiconductors : doping

Hyperfine Interactions with Mossbauer spectroscopy

Laser Ionised ⁵⁷Mn beam : a new era for Mossbauer experiments at ISOLDE. 20th anniversary in 2016

- Very clean, intense beam of ⁵⁷Mn (>3x10⁸ ions sec⁻¹)
- Allows collection of single Mossbauer spectrum in ~ 3 mins.
- Able to collect many hundreds over course of a 3 day run.
- Allows low concentrations of probe atoms to be used (~10⁻ ⁴At%)

Local information....

Chemical bonding Charge states

Fe: ZnO a ferromagnetic semiconductor? (no!)

6 fold spectrum: characteristic of magnetic structure (at room temperature!!!).

Results in an external magnetic field show that the spectrum shown to be a slowly relaxing paramagnetic system.

Gunnlaugsson *et al* (APL **97** 142501 2010)

After high-dose implantations, precipitates of Fe-III are formed. These form <u>clusters</u> yielding misleading information about the nature of magnetism in ZnO (as reported by many groups over the last number of years).

Gunnlaugsson et al APL 100 042109 (2012)

Velocity (mm/s)

Mössbauer periodic table

Radiotracer PL has allowed for the full classification of the dominant impurities in ZnO

- Radio PL allows for the subtle chemical identification of luminescence through different decay chains.
- Has allowed for the identification of neutral and ionised donors [1, 2], complexed impurities [3], "double donor" centres [2, 4], and isoelectronic centres [5].

- 1. K. Johnston *et al* Phys Rev B **73** 165212 (2006).
- 2. K. Johnston *et al* Phys Rev B **83** 125205 (2011).
- 3. J Cullen et al Appl. Phys. Lett. 102 192110 (2013)
- 4. J. Cullen et al Phys Rev B 87 165202 (2013)
- 5. J. Cullen et al J. Appl Phys (2013)

New collaboration with Uni Munster: diffusion processes in CIGS (Copper Indium Gallium Selenide) solar cells: in particular Cu

Why? Cu diffusion in CIGS: the entire literature...

T(°C)

Lubomirsky et al., JAP 83 (1998) 4678

Cu 1, Cu 2, Cu 3:

- various authors,
- various (electrical) methods

⁶⁴Cu:

- tracer experiment
- bulk single-crystal CIS

Beamtime scheduled for Nov 2017

Emission channeling: (β^- , β^+ , c.e., α)

What do you need to do Emission Channeling

Vacuum chamber

Lattice sites of ²⁷Mg in different pre-doped GaN

 Electron emission channeling patterns show mix of substitutional + interstitial ²⁷Mg

- Interstitial Mg fraction highest in *p*-GaN:Mg
- Lowest in *n*-GaN:Si
- ⇒ Direct evidence for amphoteric character of Mg that is coupled to the doping type
- Site change interstitial substitutional Mg_{Ga}
- \Rightarrow Activation energy for migration of interstitial Mg: $E_{\rm M} \gg 1.3 2.0 \text{ eV}$

Phys. Rev. Lett. 118, 095501(2017)

"For the greatest benefit to mankind"

2016 NOBEL PRIZE IN PHYSICS David J. Thouless F. Duncan M. Haldane J. Michael Kosterlitz

© Trinity Hall, Cambridge University. Photo: Kiloran Howard David J. Thouless Prize share: 1/2 Photo: Princeton University, Comms. Office, D. Applewhite F. Duncan M.

Ill: N. Elmehed. © Nobel Media 2016 J. Michael Kosterlitz Prize share: 1/4

Prize share: 1/4

Haldane

"for theoretical discoveries of topological phase transitions and topological phases of matter"

Source: "The Nobel Prize in Physics 2016". *Nobelprize.org.* Nobel Media AB 2014. Web. 4 Dec 2016. ">http://www.nobelprize.org/nobel_prizes/physics/laureates/2016/>

Topological insulators

Semi-metalic surface states originating from non-trivial topology of the electronic band structure in the bulk (insulator)

Dirac fermions at the surface (equivalent to graphene) + spin-locking → spin current in a *non-magnetic* material

(spintronics, quantum computation...)

Z₂ topological insulators: Topological crystalline insulators:

Topological crystalline insulators

Rhombohedral distortion: breaking crystal mirror symmetry

Perturbed angular correlation ... with hyperfine interactions

 ω_Q or $\Delta E_Q \propto Q V_{zz}$

	technique	parent	<i>t</i> _{1/2}	Q [b]
Pb	PAC	^{204m} Pb	67 min	0.44
Sn	eMS	¹¹⁹ In ^{119m} Sn	2.4 min 293 d	0.094
Ge	PAC	⁷³ As	80 d	0.70

density functional theory calculations

to establish relation between measure HFI parameters and structural parameters

Mossbauer spectroscopy

... with hyperfine interactions

¹¹⁹In \rightarrow ¹¹⁹Sn emission Mössbauer (PbTe)

Proof-of-principle with most challenging case:

- > PbTe is cubic
- > smallest ∆r (< 0.10 Å)
- > ¹¹⁹Sn smallest Q

> <10 % precision in Δr (corresponding to < 0.05 Å)

- > non-regular sites: OK
- > damage: OK

See also:

Received: 5 April 2017 Accepted: 10 July 2017 Published online: 15 August 2017

OPEN

films R. Mantovan¹, R. Fallica^{1,1]}, A. Mokhles Gerami^{2,3}, T. E. Mølholt², C. Wiemer¹, M. Longo¹, H. P. Gunnlaugsson⁴, K. Johnston², H. Masenda⁵, D. Naidoo⁵, M. Ncube⁵, K. Bharuth-Ram⁶⁷, M. Fanciulli^{2,8}, H. P. Gislason⁴, G. Langouche⁸, S. Olafsson⁴ & G. Weyer¹⁰

amorphous-to-crystalline phase transition mechanism in GeTe thin

Atomic-scale study of the

...with emission channeling

Successful emission channeling measurements on topological insulators

Combination with multitude of techniques, at ISOLDE and beyond, and strong link to theory

Challenges

- Still a niche field, unfamiliar beyond the core community, or necessarily small: emission channelling needs to be attached to an ISOLDE ...
- Limitations with beamtime → shift requests can be comparatively modest compared to nuclear physics. → only one run a year....(Mossbauer work previously mentioned took about 2.5 years to complete).
- Core community e.g. in Germany not being renewed, nuclear solid state physics not popular at home labs: licenses etc... Leads to problems with training.
- Pace of materials science is very fast... difficult to react to new developments/materials....experiments which don't get beam within one year can lose relevance....
- Safety administration becoming ever heavier

New developments

- Upgrading of detectors/spectrometers/ upgrade DAQ.
- LaBr and CeBr detectors, allow for wider range of probes to be used.
- Spectrometer for biophysics for Mossbauer spectroscopy.

CERN-MEDICIS: new Facility for medical isotopes (and solid state/materials?)

Dy 150 7.2 m	Dy 151 17 m	Dy 152 2.4 h	Dy 153 6.29 h	Dy 154 3.0 · 10 ⁶ a	Dy 155 10.0 h	Dy 156 0.056	Dy 157 8.1 h	Dy 158 0.095	Dy 159 144.4 d	Dy 160 2.329	Dy 161 18.889	Dy 162 25.475
α 4.23 γ 397 α	c; α 4.07 γ 386; 49; 546; 176 g; m	n 3.63 7257 9	<; β* α 3.46 γ81; 214; 100: 254	a 2.87	έ β ⁺ 0.9; 1.1 γ 227	α33 96.α ≤0.009	е у 326	ar 33 m. a < 0.006	e y 58; e ⁻ o 8000	нт 60 17л. ц <0.0003	σ 600 σ _{0. α} <1E-6	et 170
Tb 149 42 m 41h # 2.97 # 3.99 7796; 7.282; 165	Tb 150 5.8 m 3.67 h 5' 4', 3' 31; 600; 27 500; 1508; 608 608 609 6	Tb 151 25 s 17.6 h 1749; c p* 73. v 3.41 c y 192; 9000, 287, 108.	Tb 152 42 m 17.5 h h 203 s 100 p ⁺ 2.8 c p ⁺ - 7.344 y 204 s 201 s 20	Tb 153 2.34 d	Tb 154 23 h 9.9 h 211 4: h 4 7246, h 5 547; 71723; 7123 1420; 944; 1127 1420; 646; 11274	Tb 155 5.32 d	Tb 156 4 h? \$4 h 5.4 d 1534. 100 \$1 m 7 100 \$1 m 7 100 \$1 m 7	Тb 157 99 а	Tb 158 10.5 s 180 a h;(110) s 100 100 100 100 100 100 100 100 100 100	Tb 159 100	Tb 160 72.3 d β ⁻ 0.6; 1.7 γ879; 299; 966 σ 570	Tb 161 6.90 d β ⁻ 0.5; 0.6 γ26; 49; 75
Gd 148 74.6 a	Gd 149 9.28 d	Gd 150 1.8 · 10 [®] a	Gd 151 120 d	Gd 152 0.20 1.1 · 10 ¹⁴ a	Gd 153 239.47 d	Gd 154 2.18	Gd 155 14.80	Gd 156 20.47	Gd 157 15.65	Gd 158 24.84	Gd 159 18.48 h	Gd 160 21.86
a 3.183 o 14000	γ 150; 299; 347	α2.72	γ 154; 243; 175	α 2.14; σ 700 σ _{n, α} <0.007	σ 20000 σ _{h, α} 0.03	a 60	σ 61000 σ _{n. α} 0.00008	<i>σ</i> −2.0	σ254000 σ _{n, α} < 0.05	a2.3	β ⁻ 1.0 γ 364; 58	σ1.5

Summary

- Solid State programme at ISOLDE: well established and a unique combination of techniques on site.
- Varied experimental programme capable of resolving otherwise difficult problems. Remaining relevant in spite of the difficulties in obtaining beam time..
- New developments should help make spectrometers more user friendly
- Possible link with MEDICIS could allow for wider community to be served (beyond ISOLDE)

OPEN ACCESS

The solid state physics programme at ISOLDE: recent developments and perspectives
Karl Johnston *et al* 2017 *J. Phys. G: Nucl. Part. Phys.* 44 104001
View abstract

Funding and Acknowledgements

- Manfred Deicher, Herbert Wolf, University of Saarlandes, Germany
- Juliana Schell University of Essen, Germany
- Guilherme Correia, Uli Wahl ITN, Lisbon, Portugal
- Lino Pereira, KU Leuven
- Martin Henry, Dublin City university, Ireland
- Monika Stachura, TRIUMF
- Bruce Marsh, Sebastian Rothe, Valentin Fedesseov, CERN

Bundesministerium für Bildung und Forschung

Danish Agency for Science Technology and Innovation Ministry of Science Technology and Innovation