The LISE spectrometer at GANIL present and near future

J.-C. Thomas, for the LISE collaboration

- LISE operation 2011-2017
 - > Overview
 - Recent experiments (2016-2017)
- LISE future
 - > Organization
 - > Roadmap

The GANIL/LISE spectrometer

- Beams
 - Stable (CSS1+CSS2): ~5 to 95 MeV/u
 - -> Projectile fragmentation (15 to 50 MeV/u); polarized
 - -> Fusion-evaporation reaction (FULIS mode)
 - < (New) SPIRAL1 beam; purification</pre>
- Selection $B_0 + determined by B_0 + determ$
 - B_{ρ} + degrader + B_{ρ} + Velocity filter
- Identification ΔE , ToF + tracking
- Experimental areas D4, D6 + LISE2000

LISE operation 2011-2017

- 576 UT (20 exp + 14 tests (14%))
 - ✓ Fragmentation : 66%
 - ✓ Fusion-evaporation : 26%
 - ✓ Stable beams: 8%
- Tests
 - ✓ LISE (detection)
 - ✓ Beam Prod S³ / Astrophysics
 - ✓ S³ (targets)
- Experimental technique

Scientific cases

 \checkmark 21 % = S³ related

GANIL Colloquium – 16-20/10/2017 – Amboise

LISE operation 2011-2017

- EXOGAM
- Château de cristal -> I
- MUST2/TiaRa
- MAYA

- -> EXOGAM2
- I -> PARIS
- -> GASPARD
- -> ACTAR TPC
- Decay (tape) station, β-N(Q)R, ...

Exp. 2011-2014
Average time: ∆t(Pub. - Exp.)
✓ Letters = 3 years
✓ PRC/EPJA = 5 years

Publication record

E650 - G. Neyens, <u>H. Heylen</u>, <u>Z. Xu</u> et al. Nuclear structure and deformation at N=20 (island of inversion) -> g-factor and quadrupole moment of ³²Al and ³⁴Al^m

E650: Nuclear structure and deformation at N=20 (island of inversion) -> g-factor and quadrupole moment of ³²Al and ³⁴Al^m

Production ³⁶S@77.5 MeV/u, 1.4 10¹² pps

> frag./pick-up + spin polarization

Measurement: β -NMR and β -NQR

E691: 0+ -> 0+ super-allowed β decay of The T_z = -1 nucleus ³⁰S Aim: $\Delta T_{1/2}/T_{1/2} \sim 0.1 \%$ (0.14 % today) $\Delta BR/BR \sim 0.2\%$ (1.3% today)

Production ³²S@50 MeV/u, 10¹² pps fragmentation

B. Blank et al., NIM A 776, 34 (2014)

1000 1500

Issue: remaining statistics after cleaning (Wien filter)?

2500 Energy (a.u.)

2000

E666 – B. Blank , J. Giovinazzo, P. Ascher, A. M. Sánchez Benítez et al. Isospin mixing in the fp shell (T_z=-2 case) -> BR_p/BR_y in the decay of IAStates

Theoretical framework: N.A. Smirnova et al., PRC 95, 054301 -> β ~1 % in the case of ⁴⁴Cr, ⁴⁸Fe – Precise spectroscopic data needed

E666: Isospin mixing from BR_p/BR_γ in the decay of T_z =-2 nuclei

Measurement Impl.-βpγ spatial and time correlations

✓ EXOGAM clovers
 ✓ ΔE-E-Veto telescope
 ❑ DSSSD2*16*3 mm: XY

DSSSD2*16*3 mm: X
 ToF: CAVIAR-HF, D6-HF

E666 Preliminary (J. Giovinazzo): <u>48Fe case</u>

-> Higher statistics than in all previous campaigns at LISE Further cleaning work required (gating)

GANIL Colloquium - 16-20/10/2017 - Amboise

- E748 A. Matta, S. Koyama et al. <u>1st exp. of the MUST2 campaign</u> Direct reaction modeling and nucleon-nucleon forces at the drip-line -> ^{10,12}Be(d,³He) ^{9,11}Li
- ✓ n-rich Be : halo structure

Geometrical w.f. mismatch -> very low cross section

n-rich Li: core excitations

¹⁰Be(d,³He) vs. ¹²Be(d,³He)
 -> π strength evolution in n-rich Be isotopes

✓ Other channels: (d,p), (d,d), (d,t), (d,α), (d,⁶Li)
 -> optical models, pn pairing, clustering, ...

Measurement "Standard" MUST2 setup with 8 telescopes

 [✓] ToF & Tracking: CAVIAR, 2*CATS
 ✓ 0° detection: CHIO + NUMEXO2

E748: ^{10,12}Be(d,³He) ^{10,12}Li

E748 Preliminary (S. Koyama) Particle Id.

E692 – C. Whedlon et al., <u>to be performed in November</u> Resonant elastic scattering to probe cluster structures in n-rich C isotopes -> 10,11,12 Be(α,α') => 14,15,16 C(E*, Γ , J^{π})

Production ¹⁸O@50 MeV/u, few 10¹² pps Fragmentation -> ^{10,11,12}Be, few 10⁴ pps Energy reduction down to 4-5 MeV/u

Exit channels to be investigated ¹⁰Be + ⁴He -> ¹⁴C* = ¹⁰Be + ⁴He; ⁸Be + ⁴He; ⁹Be + ⁵He ;... ¹²Be + ⁴He -> ¹⁶C* = ¹²Be + ⁴He; ¹⁰Be + ⁶He;... Measurement ECLAN chamber <u>in D4 room</u> + LAMP detectors + DSSSD telescope (16x16 strips)

LISE Future: organization

Organization based upon:

- * Regular discussions with users: 3 LISE-ICC workshops in 2015-2016*
- -> Physics program: 15 proposals
 - nuclear structure and nuclear forces
 - exotic decay modes
 - nuclear astrophysics
 - collective excitation modes
- -> Definition of experimental campaigns:
 - using existing (MUST2) and new detectors (ACTAR TPC, PARIS, MUGAST,...)
 - using new beams (SPIRAL1-U)
- -> Keeping the possibility to run standalone experiments

***** Technical upgrade of the LISE spectrometer

- -> Beam pipe cooling after the 1^{st} dipole \checkmark 2017
- -> Improved detection capabilities: CAVIAR, CHIO+NUMEXO2

 \$\sqrt{2017}\$
- -> LISE QD6: optical/purity improvement for 2nd reactions 2017-2019

LISE roadmap: scientific program

2017 -> 2018

- * 1st campaign: transfer with MUST 2
 - E748 performed A. Matta et al.
 - Two remaining, dealing with exotic structures at the proton drip line
 - PAC 2017: 3 more proposals, nucl. struc./forces at the drip line; 1 astro.
- -> Prog. in 2018: PAC res. & cryogenic target & SPIRAL1 beams

2019-2020

- * 2^{nd} campaign: 2p and (β)p decays + reactions with ACTAR TPC
 - Two accepted experiments: exotic decays
 - PAC 2017: 2 more proposals, 1 astrophysics, 1 nuclear structure
- -> Prog. in 2019: to be defined in view of the other exp. In G3
- *** 3nd campaign: collective excitation modes**
 - Proposal to the GANIL PAC: Ni isotopic chain
 - Part of the ACTAR TPC campaign <u>if</u> the LISE QD6 project is completed

LISE roadmap: technical developments

Gas profiler

Pumping

Ionization

chamber

μCΡ

2017 -> 2018

- Removal of the D6 platform
- Removal of the last quadrupole (3Q -> 2Q)
- New diagnostic box (set closer to the Wien Filter)

2018->2019

Optics between the 1st and 2nd focalization points⁴

- Technical solution to be defined (3Q, 4Q?)
 - -> constraints = setup size, compatibility with slowed-down beams WF - Q66/Q67 - Diag box - Q68/Q69/Q70
- Implementation

EMS profiler

Pumping

Beam

Degrader

Pumping

Conclusion

*** 2011-2017**

✓ In average: ~1 month of beam time, 3 exp./year + tests

2016-2017:

- Complementary investigation techniques/physics cases
- ✓ Rather successful experiments
- ✓ New MUST2 campaign initiated

*** 2018 -> 2020**

- MUST2 campaign completion with new proposals (?): requires a cryogenic target, SPIRAL1 beams -> organization
- ✓ ACTAR TPC campaign (2 + x) -> scheduling vs G3 exp.

* Risks/Opportunities

✓ LISE QD6 scheduling

- ✓ Available/Required beam time
- -> timeline of the campaigns

Reminder: LISE-ICC Workshop, 6-8 December 2017 at GANIL

Thank you for your attention!

and to the contributors and reviewers B. Blank, J. Giovinazzo, O. Kamalou, A. Matta, V. Morel, O. Sorlin, C. Stodel