

2017 - Amboise, France

SYSTEM FOR THE INVESTIGATION OF RECOILING IONS USING S³ J. PIOT FOR THE SIRIUS COLLABORATION

S³: Super Spectrometer Separator

S³: Super Spectrometer Separator

Use the very intense beams

From the SPIRAL2 injector

Final Focal plane

 $\frac{\text{Recoil Decay Tagging}}{\text{Separation & Mass Identification}} \\ \text{Decay Identification} \\ \alpha, \gamma, \text{ICE Spectroscopy} \\ \end{cases}$

System for the Investigation of Recoiling Ions Using S³

Silicon Tunnel : Large size \alpha/e- discrimination

Implantation detector : Large size High energy resolution Adapted granularity

γ-ray detection :5 EXOGAM clover detectors

Time of Flight : Emissive foils Thin windows High Time resolution

Colloque GANIL 2017 - J. Piot

Front-end & back-end electronics : Digital signal processing Dual gain

Maximum detection efficiency for the escaping alpha particles & conversion electrons Best energy resolution at low energy

Maximum detection efficiency for the escaping alpha particles & conversion electrons Best energy resolution at low energy

Ability to process decay chains: Large pulse (>50 MeV) followed quickly (~10 μs) by a weak pulse (<15 MeV) No dead time to detect short lived decay chains

Maximum detection efficiency for the escaping alpha particles & conversion electrons Best energy resolution at low energy

Ability to process decay chains: Large pulse (>50 MeV) followed quickly (~10 μs) by a weak pulse (<15 MeV) No dead time to detect short lived decay chains

Windowless detectors (<50 nm) Cooling through ceramic frames Dual-gain electronics with fast reset

Tracker (GANIL)

Real size prototype:

•Dimension $\simeq 260 \times 210 \text{ mm}^2$ •Active surface $\simeq 200 \times 140 \text{ mm}^2$ • Strongback with 92.5 % transmission for gap thickness homogeneity •67+47 cathode strips with 3 mm pitch •Time resolution = 150 ps •Spatial resolution = 1.5 mm FWHM

Courtesy of J. Pancin Colloque GANIL 2017 - J. Piot

DSSD (IRFU)

DSSD Tests

Tunnel (IPHC & CSNSM)

Tunnel (Junks)

The first batch of Stripy pad detectors had spurious peaks at low energy. Detector production seemed to be the cause

Tunnel (Junks)

The first batch of Stripy pad detectors had spurious peaks at low energy. Detector production seemed to be the cause

New Detectors just received

Tunnel tests (IPHC)

Validation tests for stripy pad detectors V 2.0

Pad Energy resolution (TNT2 + CREMAT PAC) : 13.6 to 17.8 keV

14.8 keV FWHM @ 6MeV

Colloque GANIL 2017 - J. Piot

Pierre Brionnet (IPHC)

Tunnel tests (IPHC) Validation tests for stripy pad detectors V 2.0 Pad Energy resolution (TNT2 + CREMAT PAC) : 13.6 to 17.8 keV

14.8 keV FWHM @ 6MeV

PSA Discrimination degraded α / β

Colloque GANIL 2017 - J. Piot

Pierre Brionnet (IPHC)

Tunnel tests (IPHC) Validation tests for stripy pad detectors V 2.0 Pad Energy resolution (TNT2 + CREMAT PAC) : 13.6 to 17.8 keV

14.8 keV FWHM @ 6MeV

Colloque GANIL 2017 - J. Piot

PSA Discrimination degraded α / β

T10T90 tot

Gamma-Spectroscopy (CSNSM) Optimized Gamma efficiency for low energy transitions : Compact geometry Thin capsule for the Silicon detectors

Planning

DSSD Instrumentation

Front End Electronics : Delivered & ongoing validation Back End Electronics : Test ongoing with the detectors Firmware development : ongoing Pulse shape analysis : ongoing System Ready in Q3 2017.

Tunnel Instrumentation

First detector Prototype validated partially Front End Electronics : Validated. Production ongoing Back End Electronics : prototype produced under qualification Readout data interface : under development System Ready in early 2018.

Infrastructure

Mechanical design Production : Ongoing

<u>Tracker</u>

Tests Ongoing

Acquisition

Pulse Shape treatment : **Under development** Online and off line analysis : **need to be written**

SIRIUS Ready for commissioning September 2018

Conclusion

- All parts are in final production
- Energy resolutions are more than promising
- Junk events in tunnel detector solved

No element on the critical path

Commissioning expected in september 2018

The SIRIUS Collaboration

- GANIL : D. Ackermann, M. Blaizot, A. Boujrad, E. Clément,
 S. Coudert, S. Herlant, G. Lebertre, C. Maugeais, J. Piot, F. Saillant,
 G. Wittwer
- CSNSM : V. Alaphilipe, L. Gibelin, K. Hauschild, N. Karkour, X. Lafay, D. Linget, A. Lopez-Martens & 10 interns from MIT UL ESME universities.
- IPHC : P. Brionnet, O. Dorvaux, B. Gall, Th. Goeltzenlichter, C. Mathieu
- * IRFU : M. Authier, Th. Chaminade, A. Drouart, J. Kallunkathariyil, Ch. Theisen, M. Vandebroucq
- * IPNO : L. LeBlanc