Exploring the low Z-shore of the Island of Deformation at N=60 using AGATA and VAMOS

Exploring the low Z-shore of the Island of Deformation at N=60 using AGATA and VAMOS

Jérémie Dudouet^{1,2}, Antoine Lemasson³, Guillaume Maquart², Gilbert Duchêne⁴

¹Centre de Sciences Nucléaires et de Sciences de la Matière, Orsay ²Institut de Physique Nucléaire, Lyon ³GANIL, Caen ⁴Institut Pluridisciplinaire Hubert Curien, Strasbourg

Colloque GANIL: 16-20 October 2017, Amboise

Jérémie Dudouet: jeremie.dudouet@csnsm.in2p3.fr

 \implies $B(E2; 2_1^+ \rightarrow 0_1^+)$: reduced electric quadrupole transition probability $R_{4/2} = E(4^+)/E(2^+)$

 Exploring the low Z-shore of the Island of Deformation at N=60 using AGATA and VAMOS

 Introduction
 Experimental setup
 Results
 Conclusion

 Level scheme of the N=60 GS band
 Introduction
 <t

Jérémie Dudouet: jeremie.dudouet@csnsm.in2p3.fr

 Exploring the low Z-shore of the Island of Deformation at N=60 using AGATA and VAMOS

 Introduction
 Experimental setup
 Results
 Conclusion

 Comparisons to theoretical calculations

 • To understand these phenomena, theoretical calculations needs to reproduce:

 The sharp transition at N=60 for Z>36,
 the absence of transition at Z=36,
 the decreasing trend of the $R_{4/2}$ ratio.

----- Horizontal lines : schematic view of the nuclear structure evolution (from R. F. Casten, 2001)

Jérémie Dudouet: jeremie.dudouet@csnsm.in2p3.fr

 Exploring the low Z-shore of the Island of Deformation at N=60 using AGATA and VAMOS

 Introduction
 Experimental setup
 Results
 Conclusion

 Comparisons to theoretical calculations

 • To understand these phenomena, theoretical calculations needs to reproduce:

 The sharp transition at N=60 for Z>36,
 the absence of transition at Z=36,
 the decreasing trend of the $R_{4/2}$ ratio.

----- Horizontal lines : schematic view of the nuclear structure evolution (from R. F. Casten, 2001)

Jérémie Dudouet: jeremie.dudouet@csnsm.in2p3.fr

52

56

T. Togashi et al., PRL 117, 172502 (2016)

60

N

 $= E(4^{+})/E(2^{+})$

 $R_{4/2}$

64

Calc.

Exp.

68

Interpretation

Mean-field approaches fail to reproduce the observed phenomena.

⇒ Opposite $R_{4/2}$ and $B(E2; 2^+ \to 0^+)$ evolution still puzzling. Could be related to a shape coexistence phenomenon affecting the $R_{4/2}$ ratio.

MCSM calculations give the first microscopical reproduction of the N=60 transition in Zr nuclei.

 \Rightarrow Z>36: transitions generated by a strong $\pi g_{9/2} - \nu g_{7/2}$ coupling.

Explo	ring the low Z-shore of the Island of Deformation	on at N=60 using AGATA and VAMO	S
			Conclusion
Es deux infinis	**** **** AGATA *****	i	งป

Thank you for your attention!

And thank you to all the person involved in this experiment:

A. Lemasson, G. Maquart, G. Duchêne, M. Rejmund, E. Clément, F. Didierjean,
C. Lizarazo, C. Michelagnoli, F. Nowacki, R. Perez, K. Sieja, O. Stezowski, C. Andreoiu,
G. de Angelis, A. Astier, C. Delafosse, I. Deloncle, Z. Dombradi, G. de France, A. Gadea,
A. Gottardo, B. Jacquot, P. Jones, T. Konstantinopoulos, A. Korichi, I. Kuti, F. Le Blanc,
S.M. Lenzi, G. Li, R. Lozeva, B. Million, D.R. Napoli, A. Navin, C.M. Petrache,
N. Pietralla, D. Ralet, M. Ramdhane, C. Schmitt, D. Sohler, D. Verney.

