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Fusion based energy 
generation

N. Michel, W. Nazarewicz, M. Płoszajczak et al. JPG36 (2008)Nuclear astrophysics
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Methods developped in this presentation to solve the many body
problem:

Can address bound
and low-lying 
resonances (“short” 
range correlations).

Ψ 𝐹 𝐶𝐼
(𝐴)

=   𝐴𝜆𝐽𝜋𝑇 =  

𝛼

𝑐𝛼   𝐴𝛼𝑗𝑧
𝜋𝑡𝑧

A-body harmonic 
oscillator states

Mixing 
coefficients(unknown) Second quantization

  𝐴𝜆𝐽𝜋𝑇 𝑆𝐷𝜙00 𝑅𝑐.𝑚.
𝐴

No-Core Shell Model

ℏΩ

N
m

ax

≈ 𝑒−𝛼𝑟

HO basis

Unable to describe 
observables sensitive 
to the tail of the w.f. 
and continuum states.
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Ψ𝑁𝐶𝑆𝑀𝐶
(𝐴)

=  

𝜆

𝑐𝜆  𝐴𝜆𝐽𝜋𝑇 +  

𝑣

 𝑑 𝑟 𝑔𝑣  𝑟  𝐴𝑣   Φ
𝑣  𝑟
(𝐴−𝑎,𝑎)

Can address bound 
and low-lying 
resonances (short 
range correlations)

NCSM/RGM
Cluster formalism for 

elastic/inelastic

Methods developped in this presentation to solve the many body
problem:

Can address bound
and low-lying
resonances (“short” 
range correlations).

Ψ𝑅𝐺𝑀
(𝐴)

=  

𝑣

 𝑑 𝑟 𝑔𝑣  𝑟  𝐴𝑣   Φ
𝑣  𝑟
(𝐴−𝑎,𝑎)

Channel 
basis

Relative wave 
function (unknown) Antisymmetrizer

Cluster expansion 
technique

 𝑟𝐴−𝑎,𝑎

𝜓𝛼1

(𝐴−𝑎)
𝜓𝛼2

(𝑎)
𝛿( 𝑟 −  𝑟𝐴−𝑎,𝑎)

(𝐴 − 𝑎)
𝑎

Ψ 𝐹 𝐶𝐼
(𝐴)

=   𝐴𝜆𝐽𝜋𝑇 =  

𝛼

𝑐𝛼   𝐴𝛼𝑗𝑧
𝜋𝑡𝑧

A-body harmonic 
oscillator states

Mixing 
coefficients(unknown) Second quantization

  𝐴𝜆𝐽𝜋𝑇 𝑆𝐷𝜙00 𝑅𝑐.𝑚.
𝐴
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No-Core Shell Model
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No-Core Shell Model

Asymptotic conditions 
are exactly treated

4He+d

3N force:
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• Consistent ab initio calculation of this
system.

• Bound and resonant states are
treated in the same way.

• Effects of the chiral 3N force are
revealed.

No-Core Shell Model

Asymptotic conditions 
are exactly treated

4He+d

3N force:
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Ability to probe the remaining
inaccuracies of the nuclear interaction.

High accuracy is achieved in the low-
energy limit, important for:

1. Astrophysical S-factor.
2. Radiative capture at low

energy.

G. Hupin, S. Quaglioni and P. Navrátil PRL114 (2015)
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Possibility to discriminate between chiral nuclear forces ?
IRIS collaboration:
A. Kumar, R. Kanungo, 
A. Sanetullaev et al. 

Some of the shortcomings of the nuclear 
interaction can already be probed in p-shell 
nuclei through reactions.
[NN p-waves are not perfectly reproduced 
by N2LOsat ]

A. Kumar, R. Kanungo, A. Calci et al. PRL117 (2016).
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G. Hupin, J. Langhammer et al., PRC88 (2013); P. Navrátil, S. Quaglioni, G. Hupin et al., Phys. Scri.91 (2016) Celebrating 
the 1975 Nobel Prize

• The 3N interactions 

influence mostly the P

waves.

• The largest splitting 

between P waves is 

obtained with NN+3N.

More spin-orbit 

splitting

3N vs

NN “bare”

Comparison between NN+3N-
ind and NN+3N at Nmax=13 with 
six 4He states and 14 5He states.

Three scenarii of nuclear Hamiltonians

NN+3N

NN+3N-induced
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• Good agreement between 

the two methods.

Scattering phase shifts NCSM/FY

Triangles from Faddeev-Yakubovsky
Courtesy of R. Lazauskas
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Stable

• Bound states
• Resonant states
• Scattering states
• Halo densities
• Clusterizations
• …
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Stable

• Bound states
• Resonant states
• Scattering states
• Halo densities
• Clusterizations
• …

Carolina Romero-Redondo et al. PRL113 (2014); PRL117 (2016)
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Primordial Nucleosynthesis (blue)
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ITER design (Cadarache, France)

La science doit « nous rendre comme 
maîtres et possesseurs de la Nature » 
R. Descartes Discours de la méthode.

Primordial Nucleosynthesis (blue)

Structure of the 5He  3 2
+

resonance

s-shell

p-shell

1p1h 
excitation

(d,n)
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• Importance of structure of neighboring
resonances is revealed in transfer
reactions.

S-factor  and angular distribution

no 5He structure

Structure of the 5He  3 2
+

resonance

s-shell

1p1h 
excitation
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𝜎polar 𝜃 = 𝜎 𝜃 1 +
1

3
𝑝𝑧𝑧𝐴𝑧𝑧 +

3

2
𝑝𝑧𝑝𝑧𝑡𝐶𝑧,𝑧𝑡

Reactant spins are 
prepared in a 

given 
configuration

• Importance of structure of neighboring
resonances is revealed in transfer
reactions.

• Predictions for 3H  𝑑, 𝑛 4He reaction and

its enhancement factor.

S-factor  and angular distribution

G. Hupin, S. Quaglioni and P. Navrátil to be submitted
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Angular distribution in different 
polarization scenarios

𝐽 = 1
𝐽𝑧=1

𝐽 =  1 2
𝐽𝑧=  −1 2

Spin tensor properties of the deuteron 
give the angular shape.

(Same as in 3𝐻𝑒(  𝑑, 𝑝)4𝐻𝑒)

Total cross section increased (on average) No changes Total cross section decreased
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Ψ 𝐹 𝐶𝐼
(𝐴)

=   𝐴𝜆𝐽𝜋𝑇 =  

𝛼

𝑐𝛼   𝐴𝛼𝑗𝑧
𝜋𝑡𝑧

A-body harmonic 
oscillator states

Mixing 
coefficients(unknown) Second quantization

  𝐴𝜆𝐽𝜋𝑇 𝑆𝐷𝜙00 𝑅𝑐.𝑚.
𝐴

Variational amplitudes are the mixing coef. 𝑐𝛼 and the
single-particle orbitals 𝜑𝑖  𝑟𝑖 , i.e.

𝜕𝐸

𝜕𝑐𝛼
=

𝜕𝐸

𝜕𝜑𝑖
= 0

N. Pillet, J.-F. Berger, and E. Caurier, PRC78 (2008); C. Robin, N. Pillet, D. Peña Arteaga, and J.-F. Berger, PRC83 (2016)

The MPMH is a double variational method

No-Core No-Shell Model

ℏΩ

N
m

ax

𝜑𝑛𝑙𝑗  𝑟1

MPMH « No-Core No-Shell »

j1(r1)

Single particle 
states(unknown)

Mixing 
coefficients(unknown)

Ψ𝑀𝑃𝑀𝐻
𝐴

=  

𝛼

𝑐𝛼 𝒜𝛼𝜑𝛼,𝐴  𝑟𝐴 𝜑𝛼,𝐴−1  𝑟𝐴−1 … 𝜑𝛼,1  𝑟1
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For computational purpose we can truncate further
 Based on many-body energy:

Ψ𝑀𝑃𝑀𝐻
𝐴

=  

𝛼

𝛼𝑚𝑎𝑥

𝑐𝛼𝒜𝛼𝜑𝛼,𝐴  𝑟𝐴 𝜑𝛼,𝐴−1  𝑟𝐴−1 … 𝜑𝛼,1  𝑟1

Maximum s.p. energy

MPMH « No-Core No-Shell »

j1(r1)

Ψ𝑀𝑃𝑀𝐻
𝐴

=  

𝛼

𝑐𝛼 𝒜𝛼𝜑𝛼,𝐴  𝑟𝐴 𝜑𝛼,𝐴−1  𝑟𝐴−1 … 𝜑𝛼,1  𝑟1

Single particle 
states(unknown)

Mixing 
coefficients(unknown)

s-shell

p-shell
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For computational purpose we can truncate further
 Based on many-body energy:

Ψ𝑀𝑃𝑀𝐻
𝐴

=  

𝛼

𝛼𝑚𝑎𝑥

𝑐𝛼𝒜𝛼𝜑𝛼,𝐴  𝑟𝐴 𝜑𝛼,𝐴−1  𝑟𝐴−1 … 𝜑𝛼,1  𝑟1

Maximum s.p. energy

 Based on an active valence space and inactive
core:

Ψ𝑀𝑃𝑀𝐻
𝐴

=  

𝛼=𝛼𝑚𝑖𝑛

𝛼𝑚𝑎𝑥

𝑐𝛼 Φ𝛼,𝑁
𝜑

 𝑟𝐴−𝑎 , … ,  𝑟𝐴 Φ𝐴−𝑁
𝜑

 𝑟1, … ,  𝑟𝐴−𝑎

CoreValence

MPMH « No-Core No-Shell »

j1(r1)s-shell

p-shell

Ψ𝑀𝑃𝑀𝐻
𝐴

=  

𝛼

𝑐𝛼 𝒜𝛼𝜑𝛼,𝐴  𝑟𝐴 𝜑𝛼,𝐴−1  𝑟𝐴−1 … 𝜑𝛼,1  𝑟1

Single particle 
states(unknown)

Mixing 
coefficients(unknown)
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Reference state

• Some key features :

 Systematically improvable, i.e. all the 
Hilbert space can be spanned.

 All symmetries but translational 
invariance are conserved.

 According to the type of many-body excitations

• All nuclear correlations thought 
to be important in mean-field can 
be included.
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C. Robin, N. Pillet, D. Peña Arteaga, and J.-F. Berger PRC83 (2016)

Variation of mixing 
coefficients: large-scale 

diagonalization.

𝛿𝑐𝛼
∗ 𝐸 Ψ − 𝜆 Ψ Ψ − 1 = 0

⇔  

𝛽

Φ𝛼 𝐻 Φ𝛽 𝑐𝛽 = 𝜆𝑐𝛼

Variation of orbitals: 
generalized one-body 

problem embedded in many-
body space spanned by Ψ.

𝛿𝜑𝑖
∗ 𝐸 Ψ − 𝜆 Ψ Ψ − 1 = 0

⇔ ℎ 𝜌 , 𝜌 = 𝐺 𝜎

Orbitals are optimum:   𝜑 = 𝑈  𝜑

Mean-field adapted to a 
given type of many-body 
correlations (NCSMC, Shell-
Model, 2p-2h…). HO states

Opt. orbital

Ch. Constantinou, 
M. A. Caprio et al.
arXiv:1605.04976 

Illustration

4He

n

n
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use MPMH for the first time:
 To renormalize a bare nuclear interaction 

and reveal the corresponding mean-field.
 MPMH can treat beyond mean-field

correlations.

Ab initio →Mean field

Ab initio

Mean field

MPMH
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use MPMH for the first time:
 To renormalize a bare nuclear interaction 

and reveal the corresponding mean-field.
 MPMH can treat beyond mean-field

correlations.
 Need for a more general functional form (yet

easy to integrate).

𝑣12 𝜌 =  

𝑗=1

2

𝑊𝑗 + 𝐵𝑗𝑃𝜎 − 𝐻𝑗𝑃𝜏 − 𝑀𝑗𝑃𝜎𝑃𝜏 𝑒
 −(  𝑟1−  𝑟2)2

𝜇𝑗

+ 𝑊𝑗 + 𝐵𝑗𝑃𝜎 − 𝐻𝑗𝑃𝜏 − 𝑀𝑗𝑃𝜎𝑃𝜏 𝑒  −(𝑟1−𝑟2)2
𝜇3

𝜌𝛼 𝑟1 +𝜌𝛼 𝑟2

2 𝜇3𝜋  3
2

+𝑖𝑊𝐿𝑆𝛻12𝛿  𝑟1 −  𝑟2 ∧ 𝛻12  𝜎1 +  𝜎2

+ tensor

Ab initio →Mean field

Courtesy of N. Pillet

𝐸∗ 21
+ theory vs expt.

th
eo

ry

Ab initio

Mean field

MPMH
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use MPMH for the first time:
 To renormalize a bare nuclear interaction 

and reveal the corresponding mean-field.
 MPMH can treat beyond mean-field

correlations.
 Need for a more general functional form (yet

easy to integrate).

𝑣12 𝜌 =  

𝑗=1

2

𝑊𝑗 + 𝐵𝑗𝑃𝜎 − 𝐻𝑗𝑃𝜏 − 𝑀𝑗𝑃𝜎𝑃𝜏 𝑒
 −(  𝑟1−  𝑟2)2

𝜇𝑗

+ 𝑊𝑗 + 𝐵𝑗𝑃𝜎 − 𝐻𝑗𝑃𝜏 − 𝑀𝑗𝑃𝜎𝑃𝜏 𝑒  −(𝑟1−𝑟2)2
𝜇3

𝜌𝛼 𝑟1 +𝜌𝛼 𝑟2

2 𝜇3𝜋  3
2

+𝑖𝑊𝐿𝑆𝛻12𝛿  𝑟1 −  𝑟2 ∧ 𝛻12  𝜎1 +  𝜎2

+ tensor

 Use properties of the continuum to infer 
an interaction fitted for exotic systems: a 
first step towards reactions.

Continuum properties of 11N

Ab initio →Mean field

Courtesy of N. Pillet

𝐸∗ 21
+ theory vs expt.

th
eo

ry

Ab initio

Mean field

MPMH
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The complex scaling and the resonance states

Aguilar-Balslev-Combes theorem: the resonant states of the original Hamiltonian are invariant and
the non-resonant scattering states are rotated and distributed on a 2θ ray that cuts the complex
energy plane with a corresponding threshold being the rotation point.

Kruppa et al. PRC89 (2014)

Complex 

scaling

Half-lifeEnergy

 𝐻 𝑟, 𝜃 𝜓 𝑟, 𝜃 = 𝐸 + 𝑖Γ 𝜓 𝑟, 𝜃

 𝐻 𝜃 = 𝑒−2𝑖𝜃  𝑇 +  𝑉 𝑟𝑒𝑖𝜃

 𝐻 𝑟 =  𝑈 𝜃  𝐻 𝑟  𝑈−1 𝜃
 𝐻 𝑟 =  𝑇 +  𝑉 𝑟
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The complex scaling and the resonance states

Kruppa et al. PRC89 (2014)

Complex 

scaling

 𝐻 𝜃 = 𝑒−2𝑖𝜃  𝑇 +  𝑉 𝑟𝑒𝑖𝜃

 𝐻 𝑟 =  𝑈 𝜃  𝐻 𝑟  𝑈−1 𝜃
 𝐻 𝑟 =  𝑇 +  𝑉 𝑟

Boundary limit problem Bound state problem

Spatially extended 
but falls off 
exponentially

Known 
asymptotic

𝑈 𝜃 𝐻(𝑟)𝑈 𝜃 −1

𝜓 𝑟, 𝜃 ~
∞

𝑒−𝒌𝒓 𝑠𝑖𝑛 𝜃
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Collaboration with R. Lazauskas and J. Carbonell

N3LOMalfliet-Tjon

Generalization of the 
MPMH configuration 
mixing approach to 
symmetric non-hermitian
complex matrices.

Schematic case: the deuteron
• Use of an HO basis in Jacobi coordinates
• Diagonalization in the deuteron channel
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• SRG evolution requires spanning a 
large NN basis (𝑛𝑟~150). The 
typical scale of k is 10 fm−1

(𝑉𝑁𝑁).

• Complex scaling involves the 
integration of diverging 
polynomials (of order n) far from 
their zeroes.
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5Li

6Li

6He

neutron’s separation (fm)

4
H

e-
n
eu

tr
o
n
s 

se
p
ar

at
io

n
 (

fm
)

With core
polarization
effects


