Single-particle structure of ¹⁷C studied with the ¹⁶C(d,p) transfer reaction

Franck Delaunay

LPC Caen, France

XXth Colloque GANIL, 15-20 October 2017

<u>X. Pereira-López</u> ^{1,2}, B. Fernández-Domínguez ², N.L. Achouri ¹, N. A. Orr ¹, W. Catford ³,
M. Assié ⁴, S. Bailey ⁵, B. Bastin ⁶, Y. Blumenfeld ⁴, M. Caamaño ², L. Caceres ⁶, E. Clément ⁶,
A. Corsi ⁷, N. Curtis ⁵, F. Farget ⁶, M. Fisichella ⁸, G. de France ⁶, J. Gibelin ¹, A. Gillibert ⁷,
G. Grynier ⁶, F. Hammache ⁴, O. Kamalou ⁶, A. Knapton ³, T. Kokalova ⁵, V. Lapoux ⁷,
B. Le Crom ⁴, S. Leblond ¹, F.M. Marqués ¹, A. Matta ³, P. Morfouace ⁴, J. Pancin ⁶, L. Perrot ⁶,
E. Pollacco ⁷, D. Ramos ², C. Rodríguez-Tajes ^{2,6}, T. Roger ⁶, F. Rotaru ⁹, M. Sénoville ⁷,
N. de Séréville ⁴, R. Smith ⁵, O. Sorlin ⁶, M. Stanoiu ⁹, I. Stefan ⁴, D. Suzuki ⁴, J.C. Thomas ⁶,
M. Vandebrouck ⁶, J. Walshe ⁵, C. Wheldon ⁵

¹ LPC Caen, ² Univ. Santiago de Compostela, ³ Univ. Surrey, ⁴ IPN Orsay, ⁵ Univ. Birmingham,
 ⁶ GANIL, ⁷ CEA/IRFU/SPhN Saclay, ⁸ LNS Catania, ⁹ IFIN-HH Bucharest

Motivation: Shell gaps in n-rich C isotopes

ESPE: shell model (WBT) ²⁴O: Hoffman, PLB 672, 17 Tshoo, PRL 109, 022501

Stanoiu,

New shell gaps at N=14 and N=16

v2s1/2 and v1d5/2 nearly degenerate \rightarrow No gap at N=14 Gap at N=16?

Motivation: Shell gaps in n-rich C isotopes

ESPE: shell model (WBT) ²⁴O: Hoffman, PLB 672, 17 Tshoo, PRL 109, 022501

Locate v2s_{1/2}, v1d_{5/2} and v1d_{3/2} strength in ¹⁷C with the ¹⁶C(d,p) neutron transfer reaction

States of ¹⁷C

GS: One-neutron removal from ¹⁷C

Sauvan, PLB 491, 1 ; PRC 69, 044603 Maddalena, PRC 63, 024613 Rodriguez-Tajes PRC 82, 024305

 \rightarrow J^{π} = 3/2⁺

 $\rightarrow \begin{bmatrix} 2^{+} \otimes \nu \, 1d_{5/2} \end{bmatrix}_{3/2^{+}} \text{ dominant component} \\ \rightarrow 0^{+} \otimes \nu \, 1d_{3/2} \quad C^{2}S_{exp} \approx 10 \times C^{2}S_{WBP} (0.03)$

Bound excited states

Known energies and spin-parities

Elekes, PLB 614, 174 ; Stanoiu, PRC 78, 034315 ; Suzuki, PLB 666, 222 ; Kondo, PRC 79, 014602 ; Ueno, PRC 87, 034316

\rightarrow No spectroscopic factors measured

 \rightarrow 1/2⁺ state = halo candidate \rightarrow ℓ = 0 admixture?

Unbound states \rightarrow No sp configurations probed

Goals of the experiment

• Use ¹⁶C(d,p) to populate states of ¹⁷C carrying single-neutron components

 \rightarrow Locate the $\nu 1d_{5/2}^{},\,\nu 2s_{1/2}^{}$ and $\nu 1d_{3/2}^{}$ strengths

 \rightarrow Investigate existence of N = 14 and 16 gaps in n-rich C isotopes

• Ground-state:

 \rightarrow Independent measurement of the 0+ \otimes v1d_{_{3/2}} spectroscopic factor

Excited states:

 $\rightarrow 0^+ \otimes \nu n \ell j$ spectroscopic factors

 \rightarrow ℓ = 0 admixture in the 1/2⁺ state

Experimental setup at GANIL

Proton - γ-ray coincidences

Bound states

Cross-section to ¹⁷C_{g.s.}: $\sigma_{gs} = \sigma_{incl.} - \sigma_{5/2+} - \sigma_{1/2+} \rightarrow C^2S_{exp} < 0.18$ (Preliminary)

F. Delaunay – sp structure of ¹⁷C with ¹⁶C(d,p) - XXth Colloque GANIL - Oct. 2017

0.80

0.62 - 0.63

2;5/2+

0.335

* Maddalena, PRC 63, 024613

 \rightarrow Overall good agreement

Summary and outlook

¹⁶C(d,p)¹⁷C at 17.2 AMeV at GANIL-LISE with TIARA+EXOGAM+CHARISSA Bound states:

- \rightarrow $\boldsymbol{\ell}$ in agreement with previous J^{π} assignements
- \rightarrow Large fractions of $\nu 2s_{_{1/2}}$ and $\nu 1d_{_{5/2}}$ located
- $\rightarrow 1/2^+$ state at 0.217 MeV: large $\ell = 0 \text{ C}^2\text{S}_{exp} \rightarrow \text{Probably halo state}$
- \rightarrow 3/2⁺ ground state: C²S_{exp} < 0.18
- $\rightarrow C^2 S_{exp}$ in good agreement with shell-model
- \rightarrow Similar C²S_{exp} in other neutron-rich N=11 isotones
- \rightarrow v2s_{1/2} and v1d_{5/2} degenerate \rightarrow Non-existence of N=14 gap in ¹⁷C

Improved $v2s_{1/2} - v1d_{5/2}$ energy difference: combine ¹⁶C(d,p) and ¹⁶C(d,t)

Further analysis of the ground state and unbound states in progress ($v1d_{3/2}$)

Thank you for your attention!

N = 11 isotones

¹⁶C(p,p) elastic scattering

¹⁶C(d,d) elastic scattering

Kinematical lines

TIARA: Energy vs angle

Two-body haloes

$$v2s_{1/2} - v1d_{5/2}$$
 energy difference

Single-particle centroid energy

Combine:

- particle addition: ¹⁶C(d,p)
- and removal : ¹⁶C(-1n)

(present work) (Maddalena, PRC 63, 024613)

$$\epsilon = \frac{\sum_{f} (-S_{nI6} - E_{xI5}) C^{2} S^{-} + (2J_{f} + 1) (-S_{nI7} + E_{xI7}) C^{2} S^{+}}{\sum_{f} C^{2} S^{-} + (2J_{f} + 1) C^{2} S^{+}}$$

Baranger, NPA 149, 225 Signoracci, Brown, PRL 99, 099201

(% sum rule)

$$\rightarrow \epsilon_{v1d_{5/2}} \approx -1.5 \text{ MeV} \qquad (84)$$
$$\epsilon_{v2s_{1/2}} \approx -1.7 \text{ MeV} \qquad (90-100)$$

$$\epsilon_{v1d_{5/2}} - \epsilon_{v2s_{1/2}} \approx 0.2 \text{ MeV}$$

