

XXth Colloque GANIL 2017

15-20 Oct 2017 Amboise (France)

Weak interaction studies at GANIL/SPIRAL(2)

E. Liénard

LPC Caen, University of Caen Normandy

Nuclear β decay = semi-leptonic process governed by weak interaction (WI)

 \Rightarrow possible tool to study WI

Precision measurements of

- Correlations between particles momenta or momenta and spins
- "ft" values

Why?

	SM structure & conditions	Possible tests
•	V-A theory (W^{\pm} , Z_0 = mediating particles)	Exotic "currents" beyond V-A
	$\Rightarrow C_{\text{Scalar}} = C_{\text{Tensor}} = C_{\text{Pseudoscalar}} = 0$	\Rightarrow new mediating particles (leptoquarks)
•	Maximal Parity Violation (<i>MPV</i>): $C_i = C_i'$	• Violation of fundamental symmetries:
•	Time Reversal Invariance (TRI): C _i real	right currents, CP violation,
•	Conserved Vector Current (CVC)	• CVC hypothesis, unitarity of CKM matrix
•	3 fundamental particle families	(precise determination of V _{ud})

Correlations accessible to experiments

1. Between particles momenta

$$a\frac{\vec{p}_e.\vec{q}}{E_eE_v}$$

P, T conserving

2. Between momentum & spin

$$Arac{ec{J}.ec{p}_e}{JE_e}$$

T conserving sign change under P

nucleus

Ve

F		GT	Mirror
No sense	A 7	$≠$ 0 \Rightarrow P violation	$A\left(\rho\right)$
		Test of MPV	in V - A frame determination of ρ
Colloque GANIL	15 – 20 Oct 2017	E. Liénard	

- Correlations accessible to experiments
- 3. Between momenta & spin

$$D \; \frac{\vec{J}.(\vec{p}_e \times \vec{q}\,)}{J(E_e E_V)}$$

P conserving sign change under T

F	GT	Mirror
No sense	No sense	$D \neq 0 \Rightarrow T$ violation

Search for new sources of CP violation

Precise measurements of "ft" values
 (*M*, *T*_{1/2}, *BR*, *ρ*)

$$\left| ft \propto \frac{1}{C_V^2 |M_F|^2 + C_A^2 |M_{GT}|^2} \propto \frac{1}{C_V^2 |M_F|^2 (1 + \rho^2)} \right|$$

A special case: The Fierz term

always present, no correlation P, T conserving

 $b \propto C_{exotic} \times C_{standard} = 0$ in SM ! \Rightarrow Test of V - A theory

Observables sensitive to b:

1. β kinetic energy distribution

$$N(p_e) \propto W(p_e)(l+b\frac{m_ec^2}{E_e})$$

requires "precise" detection of β particles

2. β – ν correlations

$$N(p_e,\theta) \propto W(p_e)\xi(l+\tilde{a}\frac{v_e}{c}\cos(\theta)) \qquad \tilde{a} = \frac{a}{1+b\langle m_e/E_e\rangle}$$

 $a \propto |C_{exotic}|^2$ and $b \propto C_{exotic} \Rightarrow b$ raises the sensitivity of correlation parameter !

3. *Ft* values

$$Ft \propto (l + \langle m/E \rangle b)^{-l}$$

sustained studies of pure F decays \rightarrow excellent constraints on b_F

Exotic currents: the status

 β – ν angular correlation: the best results

• GT: ⁶He (Johnson *et al.* PRC 1963) $\rightarrow \tilde{a}_{GT}$ = -0.3308 (30) corrected for radiative and recoil corrections (Glück NPA 1998)

⁸Li (Sternberg *et al.* PRL 2015) $\rightarrow \tilde{a}_{GT}$ = -0.3342 (39)

• F: ³²Ar (Adelberger *et al.* PRL 1999) $\rightarrow \tilde{a}_F = 0.9989$ (65) ^{38m}K (Gorelov *et al.* PRL 2005) $\rightarrow \tilde{a}_F = 0.9981$ (48)

Results used in a global analysis including all available data

Reviews:

REVIEWS OF MODERN PHYSICS, VOLUME 78, JULY-SEPTEMBER 2006

Tests of the standard electroweak model in nuclear beta decay

Nathal Severijns* and Marcus Beck[†] Instituut voor Kern- en Stralingsfysica, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium

Oscar Naviliat-Cuncic[‡]

Université de Caen Basse-Normandie and Laboratoire de Physique Corpusculaire CNRS-ENSI, F-14050 Caen, France

(Published 29 September 2006)

IOP Publishing	Journal of Physics G: Nuclear and Particle Physic			
J. Phys. G: Nucl. Part. Phys. 41 (2014) 114001 (29pp)	doi:10.1088/0954-3899/41/11/114001			

Precision frontier in semileptonic weak interactions: theory

Barry R Holstein

Department of Physics-LGRT, University of Massachusetts Amherst, MA 01003, USA

+ Severijns et al. PhyScr 2013, Severijns JPG 2014, Wauters et al. PRC 2014 ...

Colloque GANIL

Relative precision

~ 1%

~ 0.5%

Exotic currents: the status

• Best constraints from "b", but "a" adds limits... ("b" unsensitive to right-handed v !)

• In green: constraints from LHC (CMS data) Naviliat et al ADP525(2013) Cirigliano et al PPNP71(2013)

Precision level at 10⁻³ needed to compete with LHC

Colloque GANIL

Exotic currents: status & projects

Many projects with precision level at 0.1% - 0.5 %

Parent	Technique	Team, laboratory	Remarks		
⁶ He	Spectrometer	ORNL	a = -0.3308(30)	1963	
³² Ar	Foil; p recoil	UW-Seattle, ISOLDE	$\tilde{a} = 0.9989(52)(39)$	1999	
^{38m} K	MOT	SFU, TRIUMF	$\tilde{a} = 0.9981(30)(34)$	2005	
²¹ Na	MOT	Berkeley, BNL	a = 0.5502(38)(46)	2008	
⁶ He	Paul trap	LPC-Caen, GANIL	$\tilde{a} = -0.3335(73)(75)$	2011	
⁶ He	Paul trap	LPC-Caen, GANIL	Analysis under way		 LPCTrap @ GA
⁸ Li	Paul trap; $\beta \alpha$	ANL	$\tilde{a} = -0.3342(26)(29)$	2015	
³⁵ Ar	Paul trap	LPC-Caen, GANIL	Analysis under way		
³² Ar	Foil; β -p coinc	CENBG, ISOLDE	In preparation		 WISArD @ ISO
¹⁹ Ne	Paul trap	LPC-Caen, GANIL	Analysis under way		
⁶ He	EIBT	Weizmann, SOREQ	In progress		
⁶ He	MOT	ANL, CENPA	In progress		
Ne	MOT	Weizmann, SOREQ	In progress		
²¹ Na	MOT	KVI-Groningen	In progress		
³² Ar	Penning trap	Texas A&M	In preparation		
⁸ He	Foil; $\beta \gamma$	NSCL	In preparation ?		

adapted from Severijns & Naviliat PST152(2013)

+ direct measurements of "b" with the same level of precision

Exotic currents: LPCTrap@GANIL

• Decay source confined in a transparent Paul trap

E. Liénard et al. HI236(2015)

beam

- β recoil ion detection in coincidence
- a deduced from recoil time-of-flight distribution

Simulation for ⁶He⁺ decay

- Any process modifying the kinematics must be identified and precisely controlled...!
- Here systematic effects dominated by ion cloud behaviour & β scattering

Reaching 0.1% precision level requires recurrent measurements campaigns without pressure...

- \rightarrow Not possible @ GANIL \Rightarrow LPCTrap used in mirror decays studies (see later)
- → Allowed in smaller structures: ⁶He-MOT @ CENPA / U. Washington (example)

4000

Weak-Interaction Studies with ³²Ar Decay

• Decay source implanted in a thin foil

Detection of a delayed p emitted during recoil

• p emitted during recoil \rightarrow kinetic shift (~10keV) $\propto a$

$$\Delta T = \frac{(p_{shift}^2 - p^2)}{2m_p} = \frac{\langle r_z \rangle}{2M_{ion}} (\frac{\langle r_z \rangle m_p}{M_{ion}} + 2p)$$

where $\langle r_z \rangle$ is a weighted mean of *Z*-component of recoil momentum $\propto a$

Severijns & Blank JPG44(2017)

Exotic currents: WISArD@ISOLDE

Detection of a delayed p emitted during recoil catcher beam • p emitted during recoil \rightarrow kinetic shift (~10keV) $\propto a$ • β - p coincidences at 0° & 180° in the WITCH magnet \rightarrow double kinetic shift beam catcher 901 × 1.2 I left-left/right-right 2.0 x 10 left-left/right-right right-left/left-right right-left/left-right scalar vector 1.0 "right-left" 1.5 counts 9.0 counts Simulation performed 0.4 with 5 keV resolution 0.5 0.2 on p kinetic energy 0.0 0.0 (~ 3.3 MeV) 3310 3320 3330 3340 3350 3360 3370 3380 3390 3400 3410 3310 3320 3330 3340 3350 3360 3370 3380 3390 3400 3410 energy (keV) energy (keV)

Decay source implanted in a catcher foil

Severijns & Blank JPG44(2017)

"right-right"

- globally, the vectorial current induces a kinetic shift contrary to the scalar current
- method avoids the recoil detection and is unsensitive to β scattering \rightarrow 0.1% seems reachable

Exotic currents: the Fierz interference term *b*

• Direct measurement of b

$$N(p_e) \propto W(p_e) \left(l + b \frac{\mathrm{m_e}c^2}{\mathrm{E_e}}\right)$$

<u>Requirement</u>: a clean measurement of the β spectrum especially at low energy !!

Examples: •⁶He @ Seattle using MOT (Garcia, Mueller,...& LPC Caen)
 •⁶He @ MSU (Naviliat et al)
 •⁶He @ MSU (Naviliat et al)
 •⁴⁵Ca, ⁶⁰Co, ⁶⁷Cu @ Krakow-Leuven (Severijns et al) using miniBETA spectrometer

<u>Principle</u>: pure ⁶He beam implanted in Crystals @ 40-50 MeV/A such as range > range (β)

• Test with CsI(Na) and NaI(TI) detectors Range of β particles

Careful analysis of beam induced background in the detectors

⁶He

• Precision goal: 10⁻³

Colloque GANIL

Active detector

Exotic currents: the Fierz interference term *b*

• Direct measurement of b

$$N(p_e) \propto W(p_e) \left(l + b \frac{\mathrm{m_e}c^2}{\mathrm{E_e}}\right)$$

At "low" energy 6He @ GANIL (Fléchard et al)

Source : SPIRAL @ LIRAT or DESIR

- Implantation in solid scintillator
- ~ 4π detection with high control of linearity (~ 0.1%)
- Response function measured with e⁻ accelerator in Cherbourg (CERAP, ~ 0.2 MeV $\leq T_e \leq 3.5$ MeV precision 0.1%, available in 2018)
- Control of back-scattering & external BG with vetos
- Precision goal: 10⁻³

Violation of fundamental symmetries: the Time Reversal

- *T* violation = CP violation
- Observed in meson decays but not enough to account for the large matter – antimatter asymmetry
- T-odd correlations in beta decay (*D* and *R*) and n-EDM enable to search for new sources of CP violation
- Current best results in nuclear decays:

Illustration: Sandbox Studio

¹⁹Ne decay $\rightarrow D = (1 \pm 6) \ 10^{-4}$ Calaprice et al. Hyp. Int.22 (1985) n decay $\rightarrow D = (-0.94 \pm 1.89 \pm 0.97) \ 10^{-4}$ Mumm et al. PRL107 (2011), Chupp et al. PRC86 (2012)

• CP violation: D measurement

Test of CP violation: D measurement

• Cloud polarization method: optical pumping

- Polarization achieved thanks to multiple interaction with laser @ adequate v
 → never done so far
- Upgrade of the detector setup:
 → arrangement of 8 detector modules
- Interesting beams: ²³Mg, ³⁹Ca

"MORA" project (Matter's Origin from the RadioActivity of trapped and laser oriented ions)

000

MORA project

- ~ 630k€ funded by Normandy Region for 2 years (official response just received !!)
- GANIL LPC Caen collaboration + contributions from JYFL, IKS Leuven, ISOLDE, IPNL, U Manchester
- T₀ : April 2018
- First step: ²³Mg cloud polarization measurement @ JYFL high degree expected (> 99% in 0.2ms) & measured through A_β
- Measurements of D
 - $D \propto \frac{N^+ N^-}{N^+ + N^-}$ between 2 opposite polarization directions
 - First @ JYFL, improvement @ DESIR
 - Results expected in 1 week:

JYFL: $\sigma_D \sim 5 \times 10^{-4}$ DESIR: $\sigma_D \sim 5 \times 10^{-5}$

- A factor 10 better than current result (¹⁹Ne)
 Future candidate: ³⁹Ca
- Postdoc position for 2 years: trapping optimisation and first data taking at JYFL

Subject discussed in details in the next talk (Bertram Blank)

• Nuclear mirror vs $0^+ \rightarrow 0^+$ decays

Subject discussed in details in the next talk (Bertram Blank)

Nuclear mirrors

The scientific community involved in this field... BUT

 V_{ud} (2009) = 0.9719 (17) \downarrow V_{ud} (2017) = 0.9721 (17) !!

For V_{ud} determination, ρ improvements are necessary ...

Subject discussed in details in the next talk (Bertram Blank)

• Nuclear mirrors

<u>Recent result</u>: Measurement of A_{β} in ³⁷K (TRIUMF) Fenker et al. arXiv:1706.00414v1 2017

- Source confined in MoT of TRINAT
- Detection of β in Z direction with nucleus polarization in ±Z
- Degree of P measured by laser probe & detection of photo-ions

 $\rightarrow P_{\sigma} = 99.13(8)\%$ $P_{\sigma} = 99.12(9)\%$

 \Rightarrow A_B = -0.5707(18) 0.3% relative precision

 \implies $V_{ud}(2009) = 0.9719(17)$ \implies $V_{ud}(2017) = 0.9728(14) !!$

one single shot \rightarrow clear improvement on V_{ud} & ³⁷K is not the most sensitive case ...

Subject discussed in details in the next talk (Bertram Blank)

• ρ precisely determined from correlation measurements

$(\Delta V_{ud})^{\text{limit}} \rightarrow \text{only } \Delta \rho \text{ contributes in uncertainty}$

not the most sensitive

Subject discussed in details in the next talk (Bertram Blank)

Nuclear mirrors

Perspectives @ GANIL: Measurement of a in several mirror decays using LPCTrap2

CONCLUSION

- Nuclear beta decay = sensitive tool to study Weak Interaction
 - \rightarrow Exotic currents existence
 - \rightarrow Fundamental symmetries violation
 - \rightarrow CVC hypothesis, CKM unitarity

thanks to precise measurements of distribution of events in correlations & ft values (M, $T_{1/2}$, BR, ρ) in pure and mirror transitions

- GANIL/SPIRAL(2) production platforms are useful
 - \rightarrow SPIRAL 1: light nuclei with high intensities to measure correlations (*a*, *D*), *ft* in mirrors
 - → S3-LEB: light nuclei not accessible to SPIRAL1 & heavy nuclei for *ft* values (see BB's talk)

The best site to achieve such a program, with high quality beams, is DESIR !