

α particle correlations for studying Nuclear Structure and Dynamics

Daniele Dell'Aquila^{1,2}

¹ Università degli studi di Napoli "Federico II" & INFN – Sezione di Napoli
² Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay

dellaquila@na.infn.it

Amboise, October 20th 2017

Complexity of nuclear force \rightarrow deviation from the *sphericity*: axial deformation (collective behaviours), spatial re-organization of nucleons in bounded *sub-units* (*cluster model*).

Outline of the talk:

- 1. A high-precision α -particle correlation experiment the direct decay branch of the Hoyle state in ¹²C
- 2. An *in-medium* α - α correlation study analysis of the systematic ³⁶Ar + ⁵⁸Ni from 32 AMeV to 95 AMeV

 3α correlations and the Hoyle state in ¹²C

3α correlations and the Hoyle state in ¹²C

3α correlations and the Hoyle state in ¹²C

In Nuclear Structure

Cluster state of ¹²C located at 7.654 MeV (0⁺) \rightarrow quite unusual and not well understood properties \rightarrow challenging question in nuclear physics.

D. Jenkins and O. Kirsebom, The Secret of Life, Physics World Feb. 2013

3α correlations and the Hoyle state in ¹²C

The *HOYLE* (*H*odoscope *O*riented *Y*ield *L*oader *E*xperiment) experiment at INFN-LNS \rightarrow a new *high statistics* and *low background* investigation of the HOYLE state by means of the ¹⁴N(d, α_2)¹²C(7.654) reaction.

Istituto Nazionale di Fisica Nucleare LNS - Laboratori Nazionali del Sud

- *d beam* at E_d = 10.5 MeV;
- C₃N₆H₆ target (40 μg/cm²) + 5/10 μg/cm² backing C;
- $I_d \approx 4enA;$
- $\approx 30 \ days$ of beam time;
- $\theta_{lab} = 125^{\circ}$ anti-telescope + <u>superOSCAR</u> hodoscope (31.4°).

Basic idea and experimental layout

The superOSCAR hodoscope

- 64 Hamamatsu S-3590 300µm silicon pads (1cmx1cm active area);
- $\approx 0.125 \ cm$ ceramic frame;
- 4 modules 4x4 pads in 2x2 configuration;
- 4 pre-amplifiers Net Instruments NPA-16FE (16 chs);

3a source \rightarrow 0.2% energy resolution.

single-particle energy spectrum in the anti-telescope

The superOSCAR hodoscope

- 64 Hamamatsu S-3590 300µm silicon pads (1cmx1cm active area);
- $\approx 0.125 \ cm$ ceramic frame;
- 4 modules 4x4 pads in 2x2 configuration;
- 4 pre-amplifiers Net Instruments NPA-16FE (16 chs);

3a source \rightarrow 0.2% energy resolution.

single-particle energy spectrum in the anti-telescope

single-particle energy spectrum (4-particles fullyreconstructed events \rightarrow superOSCAR)

Study of sequential vs direct mechanism: Symmetric Dalitz Plot

28000 counts under the sequential decay peak → compatible with *fully sequential process!*

 $\varepsilon_i > \varepsilon_j > \varepsilon_k$

 $x = \sqrt{3}(\varepsilon_j - \varepsilon_k)$

 $y = 2\varepsilon_i - \varepsilon_j - \varepsilon_k$

Study of sequential vs direct mechanism: Symmetric Dalitz Plot

Selected for a Viewpoint in *Physics* week ending PHYSICAL REVIEW LETTERS 29 SEPTEMBER 2017 Ś High-Precision Probe of the Fully Sequential Decay Width of the Hoyle State in ¹²C D. Dell'Aquila,^{1,2,3,*} I. Lombardo,^{1,4,†} G. Verde,^{3,4} M. Vigilante,^{1,2} L. Acosta,⁵ C. Agodi,⁶ F. Cappuzzello,^{7,6} D. Carbone,⁶ M. Cavallaro,⁶ S. Cherubini,^{6,7} A. Cvetinovic,⁶ G. D'Agata,^{6,7} L. Francalanza,² G. L. Guardo,⁶ M. Gulino,^{8,6} I. Indelicato,⁶ M. La Cognata,⁶ L. Lamia,⁷ A. Ordine,² R. G. Pizzone,⁶ S. M. R. Puglia,⁶ G. G. Rapisarda,⁶ S. Romano,⁶ G. Santagati,⁶ R. Spartà,⁶ G. Spadaccini,^{1,2} C. Spitaleri,^{7,6} and A. Tumino^{8,6} ¹Dip. di Fisica "E. Pancini", Università di Napoli Federico II, I-80126 Napoli, Italy ²INFN-Sezione di Napoli, I-80126 Napoli, Italy ³Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France ⁴INFN—Sezione di Catania, Via S. Sofia, I-95125 Catania, Italy ⁵Universidad Nacional Autónoma de México, P.O. Box 20-364, Mexico City 01000, México ⁶INFN—Laboratori Nazionali del Sud, Via S. Sofia, I-95125 Catania, Italy ⁷Dip. di Fisica e Astronomia, Università di Catania, Via S. Sofia, I-95125 Catania, Italy ⁸Facoltà di Ingegneria ed Architettura, Università Kore, I-94100 Enna, Italy (Received 15 May 2017; revised manuscript received 18 June 2017; published 25 September 2017) The decay path of the Hoyle state in ¹²C ($E_x = 7.654$ MeV) has been studied with the $^{14}N(d, \alpha_2)^{12}C(7.654)$ reaction induced at 10.5 MeV. High resolution invariant mass spectroscopy techniques have allowed us to unambiguously disentangle direct and sequential decays of the state

passing through the ground state of ⁸Be. Thanks to the almost total absence of background and the attained

resolution, a fully sequential decay contribution to the w decay width is negligible, with an upper limit of 0.043% (factor 5 higher than previous studies. This has significant constraints to 3α cluster model calculations, where high

DOI: 10.1103/PhysRevLett.119.132501

Physics

VIEWPOINT

Watching the Hoyle State Fall Apart

Two experiments provide the most precise picture to date of how an excited state of carbon decays into three helium nuclei.

by Oliver Kirsebom*

e are used to picturing atomic nuclei as smooth and spherical distributions of neutrons and protons. But the reality is often very different, and the carbon-12 nucleus provides the perfect case in point. In its ground state and some of its excited states, carbon's six neutrons and six protons are thought to segregate into three clusters of two neutrons and two protons, otherwise known as helium nuclei or alpha particles. Two experimental teams have now performed measurements that will help explore key details of this alpha-cluster

Daniele Dell'Aquila (dellaquila@na.infn.it) – Amboise, October 20th 2017

PRL 119, 132501 (2017)

2α correlations in Heavy Ion Collisions, in-medium studies.

INDRA 4*π* multi-detector

angular coverage $\approx 90\% (4\pi)$ 336 *independent cells* telecopes C₃F₈ gas chamber – Si (300 µm) – CsI (5-14cm)

ADVANTAGES

- fully angular coverage → input parameters for the construction of simulations;
- good characterization of events.

DISADVANTAGES

- limited angular resolution;
- not complete isotopic identification (Z<=4).

³⁶Ar+⁵⁸Ni collisions at 74 AMeV with INDRA: α - α correlations

Selection of central events \rightarrow transverse energy method

$$E_{t12} = \sum_{Z=1,2} E_{t12_i}$$

Cavata method

$$\tilde{b} = \sqrt{\frac{1}{N} \int \frac{E_{t12}^{\star}}{E_{t12}^{max}} Y(E_{t12}) dE_{t12}}$$

 $E_{t12} > 221 MeV \rightarrow Central collision events (<math>\tilde{b} \le 0.3$) from L. Francalanza et al.

Colliding system	E_{t12}^{\star} (MeV)
$^{36}Ar + ^{58}Ni \ 32 \ AMeV$	183
$^{36}\mathrm{Ar} + ^{58}\mathrm{Ni}$ 40 AMeV	221
$^{36}\mathrm{Ar} + ^{58}\mathrm{Ni}$ 52 AMeV	285
${}^{36}\text{Ar} + {}^{58}\text{Ni} 63 \text{ AMeV}$	352
$^{36}\mathrm{Ar} + ^{58}\mathrm{Ni}$ 74 AMeV	421
${}^{36}\text{Ar} + {}^{58}\text{Ni} 84 \text{ AMeV}$	479
$^{36}\mathrm{Ar} + ^{58}\mathrm{Ni}$ 95 AMeV	550

$$\sum Y_{1,2}(\vec{p}_1, \vec{p}_2) = \frac{Y_N(q_{rel})}{Y_N(q_{rel})} + \frac{Y_{unco}(q_{rel})}{Y_C(q_{rel})} + \frac{Y_C(q_{rel})}{Y_C(q_{rel})}$$

nuclear correlations uncorrelated pairs Coulomb anti-correlations<0

 $\sum Y_1(\vec{p}_1)Y_2(\vec{p}_2) = Y_{unco}(q_{rel})$

(Event mixing method)

$$\sum Y_{1,2}(\vec{p}_1, \vec{p}_2) = \frac{Y_N(q_{rel})}{Y_N(q_{rel})} + \frac{Y_{unco}(q_{rel})}{Y_C(q_{rel})} + \frac{Y_C(q_{rel})}{Y_C(q_{rel})}$$

nuclear correlations uncorrelated pairs Coulomb anti-correlations<0

 $R(q) + 1 = \frac{\sum Y_{1,2}(\vec{p}_1, \vec{p}_2)}{\sum Y_1(\vec{p}_1)Y_2(\vec{p}_2)}$ (two particles correlation *function*) Example from ³⁶Ar+⁵⁸Ni collisions at 16 1.6 74 AMeV with INDRA 1.4 14 1.2 Coulomb anti-correlation obtained 12 from the non-resonant IMF-IMF R(g)+1 8'9 correlations. 10 R(q)+1 0.6 0.4 ³⁶Ar+⁵⁸Ni 74 AMeV 8 0.2 60 80 100 Q_{rel} (MeV/c) 20 6 40 120 H (^ 0.5 4 exp. IMF-IMF best-fit L. Quattrocchi, PhD thesis, 2015 2 Coulomb min. Coulomb max. 0 Q_{rel} (MeV/c) 50 150 200 0.04 v_{red} (c units) 0.02 0.06

Nuclear part of the correlations \rightarrow obtained by subtracting background and taking into account the coulomb anti-correlation effects:

Using of a couple of resonances of ⁸Be (g.s. and 3.04 MeV) as nuclear thermometer \rightarrow thermal model:

$$\frac{N_L}{N_H} = \frac{\int_L Y_N(q_{rel}) dq_{rel}}{\int_H Y_N(q_{rel}) dq_{rel}} = \frac{2J_L + 1}{2J_H + 1} e^{-\frac{\Delta E}{T}}$$

The population of the excited states is a good tool to extract the temperature of the *nuclear medium* in which the resonances are produced.

From the measured peak integrals at 32AMeV, 40AMeV, 52AMeV, 64AMeV, 74AMeV, 84AMeV and 95AMeV \rightarrow we found no consistency with a thermal equilibrium hypothesis \rightarrow *extrapopulation* of the 3.04MeV state:

An interesting hypothesis:

α

⁸Be

α

α

α

α

α

α

α

α

α

Future perspectives for NUCLEX and INDRA-FAZIA collaborations

OSCAR: Odoscopio di Silici per le Correlazioni e le Analisi di Reazioni

A new <u>modular</u> hodoscope for the analysis of nuclear reactions. SSSSD ($20\mu m$, 16 strips 3mm + 0.125mm interstrip) + 16 silicon pads

superOSCAR

- Particle-particle and multi-particle correlations are a powerful tool to explore Nuclear Structure and Dynamics;
- Correlations involving α particles \rightarrow structure of self-conjugated nuclei and clustering phenomena;

• We studied the Hoyle state in ¹²C by means of 3α correlations using the ¹⁴N(d, α_2)¹²C(hoyle) at 10.5 MeV \rightarrow for obtaining a extremely *low background* we used the anti-telescope technique and we developed a new modular hodoscope, *superOSCAR* \rightarrow We improved, of a factor 5, the present precision in the knowledge of the Hoyle state direct decay branching ratio (*recently accepted on Phys. Rev. Lett.*);

•*HICs at intermediate energies* \rightarrow interesting example of how nuclear correlations are useful to study the interplay of Nuclear Structure and Dynamics \rightarrow clustering in *sub-saturation density* regions (central collisions) $\rightarrow 2\alpha$ correlations $\rightarrow {}^{8}\text{Be}$ as *nuclear thermometer* $\rightarrow {}^{36}\text{Ar}+{}^{58}\text{Ni}$ (32-95 AMeV) \rightarrow extrapopulation of the 3.04 MeV state yield \rightarrow *in-medium a-a interactions*?

Thank you for your attention.

Univ. Napoli Federico II and INFN – Napoli

Further Slides

Development of new generation hodoscopes: OSCAR

OSCAR: Odoscopio di Silici per le Correlazioni e le Analisi di Reazioni

A new hodoscope for the analysis of nuclear reactions. SSSSD (20μm, 16 strips 3mm + 0.125mm interstrip) + 16 silicon pads

Developed with the INFN-Napoli SER.

- Plug-and-play connections
- on-board pre-amplifiers
- modular and compact detector
- low cross-talk levels and high resolutions

TEST di OSCAR ai LNS: ^{40,48}Ca+^{40,48}Ca at 35 A MeV, 52° LAB

Good particles identification up to lithium isotopes via the DE-E technique.

Identification of very low energy particles with very good energy resolution. (a dedicated experiment has been performed at LNS for studiyng the effects of the silicon non-uniformity on the particle identifications and energy resolutions.

Energy spectra of the lightest identified fragments obtained in 48Ca+48Ca collisions at 35MeV/u

A route to SPES \rightarrow development of high segmentated detectors with low detection thresholds and high modularity (ancillary detector).

to be submitted for publication...

¹²C structure via the ¹⁴N(d, α) reaction: the HOYLE experiment

