Recent developments at in-flight facilities

Christoph Scheidenberger

In-flight separators world-wide

Evolution towards **multiple-stage**
and **high-resolution** systems

Storage rings, stopping cells, hybrid systems

Future directions and new experiments
Exotic nuclei: ISOL, in-flight separation, and more...

ISOL

\[p \rightarrow \text{Sep.} \]

ISOLDE, TRIUMF, ALTO, ...

In-Flight Separation

\[HI \rightarrow \text{Sep.} \]

LISE, FRS, RIPS, A-1200, ...

IGISOL

\[p \rightarrow \text{Sep.} \]

IGISOL, LISOL,...

Hybrid

\[HI \rightarrow \text{Sep.} \]

SLOW-RI, FRS-Ion-Catcher, ANL-Gas-Catcher, Cyclotron Stopper,
World map of in-flight (radioactive) beam facilities

Including those in construction

GANIL LISE3, S3
KVI
GSI FRS
FAIR Super-FRS
Dubna Acculinna
Acculinna-2
NIKFI
RIKEN RIPS
RIBF BigRIPS
HIAF
RISP
HIMAC
CNS CRIB*
RCNP
LNS Catania
Delhi*
Lanzhou RIBLL
RIBLL2
ANL*
NSCL/MSU A1900
FRIB ARIS
Notre Dame*
Florida State*
San Paulo*
Texas A&M MARS
* Low-energy facilities
* Multiple-stage systems

Adapted from: T. Kubo

CdG-2017, Amboise (France), October 16-20, 2017
Christoph Scheidenberger - GSI
Outline of the talk

Energy-Loss Spectrometer (dispersion matched)

Pre-Separator

Main Separator

Pre-Separator

Main Separator

Fragment Separator
(with achromatic, mono-energ. or homog. degrader)

Spectrometer, storage ring, hybrid system, ...
First-generation in-flight separators
Low-energy fragmentation facilities

Large relative velocity spread $\delta v/v$ induced by fragmentation reaction

\rightarrow Bp-ΔE-Bp method not sufficient:
\rightarrow Isotopic separation needs additional velocity analysis/separation

\rightarrow Wien filter (GANIL)
\rightarrow RF deflector (RIKEN, MSU, Dubna)
Separation principle: $B\rho - \Delta E - B\rho$ method

Magnetic rigidity analysis:

$B\rho = \gamma v \cdot A/Z$

$V_{\text{Fragment}} \sim V_{\text{Projectile}} \quad A/Z \sim \text{const.} \quad \text{Magnetic-rigidity analysis of energy loss yields single isotope!}$
Important asset for precision measurements: dispersion matching

1500 MeV/u 12C + Be \rightarrow 8B

Other examples: SPEG, Grand-RAIDEN, SHARAQ, S-800, ...
Spectroscopy by knock-out reactions

Sudden process
Reaction: $\Delta t \approx 10^{-22} \text{ s}$
Internal motion: $\approx 10^{-21} \text{ s}$

1.4 GeV/u $^8\text{B} \rightarrow \text{C}$

$^9\text{B} \rightarrow \text{Be} + p$
^{12}C Target, $E_{lab}=1.44 \text{ GeV}$
FRS Data (GSI), Theory (Giessen)

900 MeV/u $^\text{A}\text{C} + \text{C} \rightarrow ^\text{A-1}\text{C} + x$

^{12}C stable
^{17}C
^{19}C Halo
Shell closure in ^{24}O

Next-generation in-flight separators
Multiple-stage mass separation for fusion products

- Multistep separation
- Large acceptance
- Variable modes
- Mass resolution ($\Delta M/M = 1/460$)
- High transmission

Image 1
Highly selective beam rejection

Image 3
TKE selection

Image 4: Mass selection
A = 101, 100, 99

Courtesy: H. Savajols

→ talk yesterday by J. Piot
Kinematics of projectile fragmentation and fission

\[400 \text{ MeV/u} \ ^{238}\text{U} + 0.1 \text{ mg/cm}^2 \ ^{12}\text{C} \rightarrow ^{152}\text{Sn} \]

\[400 \text{ MeV/u} \ ^{124}\text{Xe} + 0.1 \text{ mg/cm}^2 \ ^{12}\text{C} \rightarrow ^{100}\text{Sn} \]

\[\Delta p/p \]

\[\alpha/\text{[mrad]} \]

\[\text{Fission} \]

\[\text{Fragmentation} \]

 Courtesy: H. Geissel
The new generation of in-flight separators

Coupling of two achromatic systems

Examples:

HIAF: HFRS (25Tm, 180m)
FAIR: Super-FRS (20Tm, 176m) H.Geissel et al., NIM B204, (2003), 71
RIKEN: BigRIPS (9 Tm, 78m) T.Kubo et al., NIM B204, (2003), 97
MSU: ARIS (8 Tm, ~80m) M.Hausmann et al., NIM B317, (2013), 349

→ all major, next-generation in-flight facilities are based on a pre- plus main-separator
The new generation of fragment separators

Production Target

Degrader

Pre-Separator

Main-Separator

Working Modes
- Achromatic
- Dispersive
- Mono-energetic

HIAF: HFRS
25Tm, 180m

FAIR: Super-FRS
20Tm, 176m
H. Geissel et al., NIM B204 (2003), 71

RIKEN: BigRIPS
9 Tm, 78m
T. Kubo et al., NIM B204 (2003), 97

MSU: ARIS
8 Tm, ~80m
M. Hausmann et al., NIM B317 (2013), 349
Reaction studies with relativistic radioactive beams

- Kinematic focusing → high efficiency
- Thick targets → high luminosity
- “Simple” reaction mechanism (sudden approximation) → “easy” theory
- Particle tracking → complete kinematics
- Broad range of techniques, such as
 - in-beam gamma ray spectroscopy
 - direct reaction studies
 - heavy-ion collisions
 - invariant-mass spectroscopy
 - time-of-flight mass spectroscopy

→ Few ions/sec.
→ Unbound systems
→ Studies beyond the driplines

- Nuclear structure
- Nuclear astrophysics,
- Applications (space, medicine, energy)

Other facilities for RRR beams:
- RIKEN: Zero-Degree Spectrometer
 - SHARAQ
- Super-FRS: LEB E-Buncher/Spectrometer
- R³B+High-Resolution Spectrometer

Courtesy: R. Zegers
High-resolution spectrometers coupled with in-flight separators

Standard operation mode of LEB

Pre-Separator

Dispersion-matched Main-Separator

Energy-Buncher

Dispersion matched Energy-Loss Spectrometer

Pre-Separator

Analyzer

Spectrometer

Super-FRS + LEB operated as dispersion matched spectrometer

Nuclear reactions in TA-1 lead to a momentum spread e.g. $\delta p_0 = 1\%$

The tiny momentum change $\delta p = 0.1\%$, induced in TA-2, can be resolved!

 Courtesy: H. Geissel
Storage and cooler rings
Storage and cooler rings coupled to in-flight separators

GSI: FRS+ESR
- Relativistic Heavy Ion Beam
- Production Target
- Degrader
- FRS projectile fragment separator
- ESR storage cooler ring

RIKEN: BigRIPS+RI-Ring

IMP-Lanzhou: RIBLL+CSRe

Discovery potential:
- Mass measurements
- New decay modes of HCI
- Nuclear reactions
- Astrophys. reaction rates

Isomer discoveries and studies

Bound beta decays

Dripline and shells

(In-)elastic scattering
Hybrid systems
Hybrid systems (I): reaccelerated beams at MSU with ReA facility

ReA builds on various ion-stopping and manipulation techniques
- gas-filled ion catcher
- cyclotron stopper
- solid beam catchers
EBIT/S charge breeder and linac

Recent result with ReA3: 3 MeV/u

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas cell</td>
<td>15</td>
</tr>
<tr>
<td>BCB - EBIT</td>
<td>12</td>
</tr>
<tr>
<td>RFQ-LINAC</td>
<td>70</td>
</tr>
<tr>
<td>Transport to experiment</td>
<td>90</td>
</tr>
</tbody>
</table>

~1% overall efficiency

First successful rare isotope beam experiment with ReA3 in September 2015

AT-TPC: 46Ar, 40Ar (α,α'), 32S, 38S
JENSA: 34Ar, $^{34m+g}$Cl, 40Ar, 39K, (α,α'), (α,p)
General Purpose Line:
46K, 39K Fusion-Fission
47K, ANASEN
75Ga, 85Rb, NERO, (α,n)
47K, 39K, Fusion
77Br, 82,84Kr, 85Rb, SuN (p,γ)

ISLA (ISochronous Large-Aperture spectrometer), based on former TOFI
SECAR (SEparator for CApture Reactions)

Courtesy: D. Morrissey
Hybrid systems (II): SHE identification and mass measurements with high-resolution MR-TOF-MS at GARIS-II

Y. Ito et al., submitted arXive: 1709.06468

254No++

10 SHE masses measured
80 masses in 4 weeks
30 masses for first time
Shortest $T_{1/2} \approx 10$ ms
Precision $\delta m/m \approx 2 \cdot 10^{-7}$

Courtesy: M. Wada
Recent laser spectroscopy results:
- Study of Rydberg states
- Determination of first ionization potential (254No)
- Hyperfine spectroscopy (253No)
- Atomic structure
- Isotope shifts (252-254No)
- Charge radii

M. Laatiaoui et al., Nature 538 (2016) 495

Courtesy: M. Block
→ talk yesterday by M. Laathiaoui
Hybrid systems (IV): isomeric beams

Production
Separation In-Flight
Energy-Bunching
Slowing-Down
Buffer-Gas-Cooling
High-Resolution
Separation+Measurements

First spatial separation of ground state and isomeric state with an MR-TOF-MS

Courtesy: W.R.Plass
Complex focal-plane equipment
(Particle-)detector arrays coupled to high-res.spectrometer stages

Exotic hypernuclei
Exotic atoms (eta')
Nucleon resonances

New opportunities at the boarder line of nuclear and hadron physics with (Super-)FRS

→ New opportunities at the boarder line of nuclear and hadron physics with (Super-)FRS

Courtesy: T. Saito
Summary

A) The elements of a modern in-flight facility

B) Solutions for precision measurements with RIBs with large emittance

1. Special ion optical systems
 (energy-loss spectrometer, isochronous systems)

2. Phase-sp. reduction by beam cooling
 (stochastic, electron or laser cooling in storage rings, buffer-gas cooling)

3. Multiple-stage separators
 (coupling of various sections for momentum and energy(-loss) analysis)

4. Coincidence measurements
 (in front and behind the reaction target, event-by-event tracking)