

laboratoire commun CEA/DSN

First lifetime measurements in the ⁷⁸Ni region with AGATA and VAMOS at GANIL

Clément Delafosse Institut de Physique Nucléaire d'Orsay for the E669 collaboration

C. Delafosse,^{1,*} D. Verney,¹ K. Sieja,² A. Gottardo,¹ A. Goasduff,³ J. Ljungvall,⁴ A. Lemasson,⁵ E. Clément,⁵ C. Michelagnoli,⁵ F. Ibrahim,¹ G. De Angelis,³ C. Andreoiu,⁶ M. Babo,⁵ A. Boso,⁷ F. Didierjean,² J. Dudouet,⁸ S. Franchoo,¹ A. Gadea,⁹ G. Georgiev,⁴ T. Konstantinopoulos,⁴ A. Korichi,⁴ S. M. Lenzi,⁷ G. Maquart,⁸ I. Matea,¹ D. Mengoni,⁷ D. R. Napoli,³ L. Olivier,¹ R. M. Pérez-Vidal,⁹ C. Portail,¹ F. Recchia,⁷ N. Redon,⁸ I. Stefan,¹ O. Stezowski,⁸ M. Zielinska,¹⁰ and the AGATA Collaboration ¹Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, F-91406 Orsay, France ²Institut pluridisciplinaire Hubert Curien, CNRS - IN2P3 - Université de Strasbourg, F-67037 Strasbourg, France ³Instituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, I-35020 Legnaro, Italy ⁴CSNSM, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, F-91406 Orsay, France ⁵Grand Accélérateur National d'Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, Caen, France ⁶Departement of Chemistry, Simon Fraser University, Burnaby, BC, V5A S16, Canada ⁷Departimento di Fisica e Astronomia, Università di Padova, and INFN, Sezione di Padova, I-35131 Padova, Italy ⁸Univ. Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, F-69622, Villeurbanne, France ⁹IFIC, CSIC-Univ. Valencia, Apartado Oficial 22085, 46071 Valencia, Spain ¹⁰CEA de Saclay, IRFU, 91191 Gif-sur-Yvette, France Colloque GANIL 2017 - Amboise

Bruyères-le-Châtel, available online

 $E(4^+)/E(2^+)$ ratio + shell model

HFB-GCM Gogny D1S (Delaroche et al. Bruyèresle-Châtel, available online)

HFB-GCM Gogny D1S (Delaroche et al. Bruyèresle-Châtel, available online

Experiment E669 at GANIL AGATA

VAMOS : $B\rho_0 = 1.1$ T.m at 28° AGATA : 8 triple clusters (24 crystals) Beam : ²³⁸U (25 nA, 6.3 AMeV) Target : ⁹Be (2.07 mg/cm²) Degrader : ^{nat}Mg (5 mg/cm²) Target to degrader distances : 120,270 and 520 µm

Magnetic spectrometer

Be target

Mg degrader

Advanced γ-tracking array

OUPS

RDDS : plunger device

RDDS : Recoil Distance Doppler Shift

If a photon is emitted before or after the degrader, the Doppler shift is different because the velocity is different

D = 120(10), 270(10), 520(10) µm

The distance D is retro-controlled by computer The correspondance between D and ToF (Time of flight) is given by ToF = D/V (where V is the velocity of the ion before the degrader)

The velocity before the degrader is deduced from the velocity measured in VAMOS through the LISE++ software

RDDS : plunger device

RDDS : Recoil Distance Doppler Shift

the LISE++ software

side feeding (λ_{sf})

Side feeding : Unobserved transitions modelled as a virtual state with an effective lifetime

 $R(t) = 1 - \left[(1 - I_{sf})(1 - e^{-\lambda_2 t}) + \frac{\lambda_2 I_{sf}}{\lambda_2 - \lambda_{(sf)}} \left(e^{\lambda_2 t} - e^{\lambda_{sf} t} \right) \right]$

side feeding (λ_{sf})

$$R(t) = 1 - \left[(1 - I_{sf})(1 - e^{-\lambda_2 t}) + \frac{\lambda_2 I_{sf}}{\lambda_2 - \lambda_{(sf)}} \left(e^{\lambda_2 t} - e^{\lambda_{sf} t} \right) \right]$$

side feeding (λ_{sf})

$$R(t) = 1 - \left[(1 - I_{sf})(1 - e^{-\lambda_2 t}) + \frac{\lambda_2 I_{sf}}{\lambda_2 - \lambda_{(sf)}} \left(e^{\lambda_2 t} - e^{\lambda_{sf} t} \right) \right]$$

side feeding (λ_{sf})

$$R(t) = 1 - \left[(1 - I_{sf})(1 - e^{-\lambda_2 t}) + \frac{\lambda_2 I_{sf}}{\lambda_2 - \lambda_{(sf)}} \left(e^{\lambda_2 t} - e^{\lambda_{sf} t} \right) \right]$$

side feeding (λ_{sf})

$$R(t) = 1 - \left[(1 - I_{sf})(1 - e^{-\lambda_2 t}) + \frac{\lambda_2 I_{sf}}{\lambda_2 - \lambda_{(sf)}} \left(e^{\lambda_2 t} - e^{\lambda_{sf} t} \right) \right]$$

side feeding (λ_{sf})

$$R(t) = 1 - \left[(1 - I_{sf})(1 - e^{-\lambda_2 t}) + \frac{\lambda_2 I_{sf}}{\lambda_2 - \lambda_{(sf)}} \left(e^{\lambda_2 t} - e^{\lambda_{sf} t} \right) \right]$$

side feeding (λ_{sf})

$$R(t) = 1 - \left[(1 - I_{sf})(1 - e^{-\lambda_2 t}) + \frac{\lambda_2 I_{sf}}{\lambda_2 - \lambda_{(sf)}} \left(e^{\lambda_2 t} - e^{\lambda_{sf} t} \right) \right]$$

Fission products identification with VAMOS

Number of ions identified with VAMOS as a function of the number of proton and neutron

Number of ions identified with VAMOS as a function of the number of proton and neutron

Mass spectra as a function of Z

FWHM = 0.6% at A = 86

Mass spectra as a function of Z

FWHM = 0.6% at A = 86

Life time measurement : ⁸⁸Kr

Life time measurement : ⁸⁸Kr

PRC 92, 064322 (2015) AGATA campaign at LNL $B(E2)\downarrow$ (e²fm⁴) $B(M1)\downarrow (\mu_N^2)$

⁸⁶Se

Life time measurement : ⁸⁴Ge

Techinics used by J. Litzinger in PRC 92, 064322 (2015)

$$R_{\text{sum}} = \frac{\sum_{j=1}^{n} I_{Dj}}{\sum_{j=1}^{n} I_{Dj} + \sum_{j=1}^{n} I_{Tj}} = \sum_{j=1}^{n} n_j R(x_j),$$

Life time measurement : ⁸⁴Ge

Techinics used by J. Litzinger in PRC 92, 064322 (2015)

$$R_{\text{sum}} = \frac{\sum_{j=1}^{n} I_{Dj}}{\sum_{j=1}^{n} I_{Dj} + \sum_{j=1}^{n} I_{Tj}} = \sum_{j=1}^{n} n_j R(x_j),$$

Щ

0.8

0.6

0.4

0.2

0

0

B(E2)↓ (e²fm⁴) B(M1)↓ (μ_N²)

Sudden rise of collectivity after the N=50 shell closure

Collectivity still rises from Se to Ge at N=52 ...

Shell model : K. Sieja, private communication based on theory developed in PRC 88, 034327 (2013) and references therein Sudden rise of collectivity after the N=50 shell closure

Collectivity still rises from Se to Ge at N=52 ...

... in contradiction with shell model calculation (Z=34 supposed to be the maximum of collectivity : proton mid-shell)

Shell model : K. Sieja, private communication based on theory developed in PRC 88, 034327 (2013) and references therein

HFB-5DCH Gogny D1S (Delaroche et al. Bruyères-le-Châtel, available online Sudden rise of collectivity after the N=50 shell closure

Collectivity still rises from Se to Ge at N=52 ...

... in contradiction with shell model calculation (Z=34 supposed to be the maximum of collectivity : proton mid-shell)

HFB-GCM calculations quite well reproduce this value : coalescence of the 2 coexisting shapes before N=50 ?

Shell model : K. Sieja, private communication based on theory developed in PRC 88, 034327 (2013) and references therein

HFB-5DCH Gogny D1S (Delaroche et al. Bruyères-le-Châtel, available online Sudden rise of collectivity after the N=50 shell closure

Collectivity still rises from Se to Ge at N=52 ...

... in contradiction with shell model calculation (Z=34 supposed to be the maximum of collectivity : proton mid-shell)

HFB-GCM calculations quite well reproduce this value : coalescence of the 2 coexisting shapes before N=50 ?

RHB-DD-PC1: P. Marevic, private communication based on theory developed in PRC 89, 044325 (2014)

HFB-5DCH Gogny D1S (Delaroche et al. Bruyères-le-Châtel, available online

Shell model : K. Sieja, private communication based on theory developed in PRC 88, 034327 (2013) and references therein RHB-DD-PC1: P. Marevic, private communication based on theory developed in PRC 89, 044325 (2014)

Conclusions

First lifetime of excited states measured in ⁸⁸Kr

Lifetime measured with better accuracy in ⁸⁶Se

First lifetime measured in the very exotic ⁸⁴Ge

Unexpected enhancement of collectivity in 84 Ge (due to the N=50 gap weakening at Z=32?)

Conclusions

First lifetime of excited states measured in ⁸⁸Kr

Lifetime measured with better accuracy in ⁸⁶Se

First lifetime measured in the very exotic ⁸⁴Ge

Unexpected enhancement of collectivity in 84 Ge (due to the N=50 gap weakening at Z=32?)

Many results in the ⁷⁸Ni region are coming :

- Neutron monopole drift towards 78Ni
- Intruder states in N=49 isotones

Stay tuned !

Perspectives

- Multistep coulex in Ge isotopes (LoI at SPES, M. Zielinska, D. Verney et al) : E2 strength distribution

Perspectives

- Multistep coulex in Ge isotopes (LoI at SPES, M. Zielinska, D. Verney et al) : E2 strength distribution

- $<\delta r^2$ > measurement by laser spectroscopy in N=52 isotones (LINO at ALTO)

Perspectives

- Multistep coulex in Ge isotopes (LoI at SPES, M. Zielinska, D. Verney et al) : E2 strength distribution

- $<\delta r^2$ > measurement by laser spectroscopy in N=52 isotones (LINO at ALTO)

- Electron conversion spectroscopy : low-lying 0+ state in ⁸⁴Ge ? (ALTO or/and GRIFFIN/TRIUMF)

Thank you for your attention !

C. Delafosse,^{1,*} D. Verney,¹ K. Sieja,² A. Gottardo,¹ A. Goasduff,³ J. Ljungvall,⁴ A. Lemasson,⁵ E. Clément,⁵ C. Michelagnoli,⁵ F. Ibrahim,¹ G. De Angelis,³ C. Andreoiu,⁶ M. Babo,⁵ A. Boso,⁷ F. Didierjean,² J. Dudouet,⁸ S. Franchoo,¹ A. Gadea,⁹ G. Georgiev,⁴ T. Konstantinopoulos,⁴ A. Korichi,⁴ S. M. Lenzi,⁷ G. Maquart,⁸ I. Matea,¹ D. Mengoni,⁷ D. R. Napoli,³ L. Olivier,¹ R. M. Pérez-Vidal,⁹ C. Portail,¹ F. Recchia,⁷ N. Redon,⁸ I. Stefan,¹ O. Stezowski,⁸ M. Zielinska,¹⁰ and the AGATA Collaboration ¹Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, F-91406 Orsay, France ²Institut pluridisciplinaire Hubert Curien, CNRS - IN2P3 - Université de Strasbourg, F-67037 Strasbourg, France ³Instituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, I-35020 Legnaro, Italy ⁴CSNSM, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, F-91406 Orsay, France ⁵Grand Accélérateur National d'Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, Caen, France ⁶Departement of Chemistry, Simon Fraser University, Burnaby, BC, V5A S16, Canada ⁷Departimento di Fisica e Astronomia, Università di Padova, and INFN, Sezione di Padova, I-35131 Padova, Italy ⁸Univ. Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, F-69622, Villeurbanne, France ⁹IFIC, CSIC-Univ. Valencia, Apartado Oficial 22085, 46071 Valencia, Spain ¹⁰CEA de Saclay, IRFU, 91191 Gif-sur-Yvette, France