High-precision beta-decay studies to test the weak-interaction standard model

I B G

Bertram Blank CEN Bordeaux-Gradignan

- Germanium detector calibration
- experimental studies: $0^+ 0^+ \beta$ decay mirror β decay
- future work

20th Colloque de GANIL, Amboise, October 15th – 20th , 2017

• • Nuclear beta decay

- in general: $\ ft = \frac{k}{G_v^2 < M_F >^2} \ + \ G_A^2 < M_{GT} >^2}$
- for 0+ \to 0+ transitions: only vector current due to selection rules $ft = \frac{k}{G_{\rm v}^2 < M_F >^2}$
- experimental quantities: precise measurements of masses of parent and daughter, half-life, branching ratio
- correct for other interactions:

 many transitions: validate corrections, test CVC, determine V_{ud} matrix element, test CKM matrix unitarity, test scalar contributions...

Germanium detector calibration

Super-allowed Fermi transitions for T_z = 0

close to 100% g.s. to g.s. transition

low precision needed for non-analog transitions

Super-allowed Fermi transitions for $T_z = -1$

- many decay channels open
- strong non-analog transitions
- high precision of γ efficiency needed \rightarrow 0.1%

X-ray

¹³⁷Cs

- $\Delta \varepsilon_{rel} = 0.1\%$, $\Delta \varepsilon_{abs} = 0.15\%$
- calibration programme of a HP Ge detector:
- x-ray photography of detector
- scan of the crystal at CSNSM
- source measurements
- MC simulations: CYLTRAN, GEANT4

Relative detection efficiency: ²⁴Na, ²⁷Mg, ⁴⁸Cr, ⁵⁶Co, ⁶⁰Co, ⁶⁶Ga, ⁷⁵Se, ⁸⁸Y, ¹³³Ba, ¹³⁴Cs, ¹³⁷Ce, ¹⁵²Eu, ¹⁸⁰Hf, ²⁰⁷Bi Peak/total: ²²Na, ⁴¹Ar, ⁵¹Cr, ⁵⁴Mn, ⁵⁷Co, ⁵⁸Co, ⁶⁵Zn, ⁸⁵Sr ...ISOLDE, IPNO sources

photography Scan at 8000-CSNSM 2 6000 exp. total i sim. J 4000strongly 2000full-energy collimated 22 23 24 position (cm) (cm) ي م 16 22 23 24 Z (cm)

B. Blank et al., NIMA776 (2015) 34

0⁺ - 0⁺ β decay: ³⁸Ca

Super-allowed Fermi transitions for $T_z = -1$

- many decay channels open
- strong non-analog transitions
- high precision of γ efficiency needed \rightarrow 0.1%

• • ³⁸Ca production at GANIL/LISE3

• • • ³⁸Ca: result

• half-life:

Kavanagh <i>et al.</i> [26]	Gallmann <i>et al.</i> [27]	Zioni <i>et al.</i> [28]	Wilson <i>et al.</i> [29]	Blank et al. [20]	Park et al. [5]	Present	Average
470(20)	439(12)	450(70)	430(12)	443.8(19)	443.77(36)	443.63(35)	443.70(25)
	→→ 443.70(25) ms				А _{EC} Н 1/2 В В	δ' _R δ _C -δ _{NS}
• BR (0⁺ —	0⁺): prese Park e →→ 77.25(*	nt: et al.: 15) %	77.09(35 77.28(16) %) %	20 (-01 15		
• Q value:	Erone	n et al.:	6612.11(7) keV	uncertainty (x		
 → ft = 30 → Ft = 30 	63.3(62) s)77.5(67) s				0	³⁸ C	a

• • • ³⁸Ca: result

0^+ - 0^+ β decay: 30 S

• • ³⁰S production at GANIL/LISE3

• • ³⁰S: very preliminary result

Future measurements at GANIL

• Heavy T_z = 0 nuclei: production at S3-LEB •

	isotope	half-life (ms)	production rate (pps)
	⁶⁶ As	95.77(23)	50000
	⁷⁰ Br	79 .1(8)	35000
	⁷⁴ Rb	64.776(30)	30000
$T_z = 0$	⁷⁸ Y	54(5)	1500
-	⁸² Nb	50(5)	300
	⁸⁶ Tc	55(6)	250
	⁹⁰ Rh	15(7)	200
	⁹⁴ Ag	37(18)	400
	⁹⁸ In	37(5)	0.3

→ test CVC over a larger range of Z

• • • S3-LEB + DESIR

best place world-wide to do this

Mirror β decays

• • Nuclear mirror beta decay

• in general: $\ ft = \frac{k}{G_v^2 < M_F >^2} \ + \ G_A^2 < M_{\rm GT} >^2}$

• for mirror transitions: vector and axial-vector currents

• experimental quantities: precise measurements of masses of parent and daughter, half-life, branching ratio, mixing ratio

Mirror β decays: ²³Mg, ²⁷Si, ³⁷K

• • Experiment JYFL2013: ²³Mg & ²⁷Si

• • • ISOLDE

T_{1/2} = 1.23635(88) s

BR = 97.96(14) %

• • Conclusions

- High-precision Germanium detector is available
 - \rightarrow Tz = -1 nuclei can be addressed: ¹⁸Ne, ²²Mg, ²⁶Si, ⁴²Ti
- Big potential for nuclear mirror decays
 - → need for high-precision GT-F mixing ratio measurements
- SPIRAL2/S3-LEB/DESIR: heaviest N=Z odd-odd nuclei
 - →CVC tests over much broader range
- Search for physics beyond standard model: ¹⁰C
- Improve theoretical corrections.... work on-going at CENBG (N. Smirnova et al.)

• • Conclusions

- High-precision Germanium detector is available
 - \rightarrow Tz = -1 nuclei can be addressed: ¹⁸Ne, ²²Mg, ²⁶Si, ⁴²Ti
- Big potential for nuclear mirror decays
 - → need for high-precision GT-F mixing ratio measurements
- SPIRAL2/S3-LEB/DESIR: heaviest N=Z odd-odd nuclei
 - →CVC tests over much broader range
- Search for physics beyond standard model: ¹⁰C
- Improve theoretical corrections.... work on-going at CENBG (N. Smirnova et al.)

Thanks for your attention

Collaborations: CENBG, GANIL, TRIUMF, Univ. of Guelph, JYFL