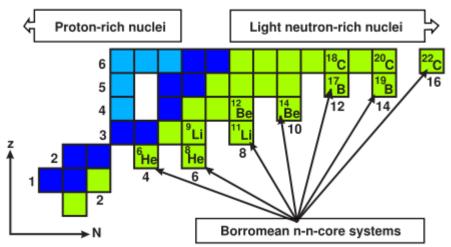
Borromean nuclei ⁶He and ⁸He elastic scattering with heavy targets at near-barrier energies

<u>Ángel-Miguel Sánchez-Benítez</u>¹, Gloria Marquínez-Durán¹, Ismael Martel¹, Krzysztof Rusek², Nicholas Keeley³, Kirby Kemper⁴, E587S Collaboration

University of Huelva, Spain
Heavy Ion Laboratory, Poland
National Centre for Nuclear Physics, Poland
Florida State University

Colloque GANIL 2017 Amboise


Outline

.- Introduction

- .- Similarities and differences between ^{6,8}He isotopes
- .- Expected behavior of the system ⁸He+²⁰⁸Pb in collisions at barrier energies
- .- Experimental setup for the experiment E587S @ GANIL
- .- Comparison of experimental differential elastic cross sections
 - .- Long range absorption
 - .- Neutron(s) stripping

.- Both systems are Borromean

Fig. from Prog. Part. Nucl. Phys. 67 (2012)939-994. T. Frederico et al.

.- Both systems are Borromean

•	Has the same r.m.s matter radii									
	Nucleus	R _n (fm)	R _p (fm)	R (fm)						
	⁴He	1.63 (<i>0.03)</i>	1.63 (<i>0.03)</i>	1.63 (<i>0.03)</i>						
	۴He	2.59 (0.04)	1.72 (<i>0.04)</i>	2.33 (0.04)						
	⁸ He	2.69 (<i>0.04)</i>	1.76 (<i>0.03)</i>	2.49 (<i>0.03</i>)						
	RMS radius for neutrons, protons and total									

- .- Comparison of cross sections, and in particular elastic scattering will not be affected by the size of the projectile
- .- Thicker neutron layer of ${}^{8}\text{He}$ may lead to weaker dipole coupling to the continuum than in the case of ${}^{6}\text{He}$

.- Both systems are Borromean

	Has	the	same	r.m.s	matter	radii
--	-----	-----	------	-------	--------	-------

Nucleus	R _n (fm)	R _p (fm)	R (fm)				
⁴ He	1.63 (<i>0.03)</i>	1.63 (<i>0.03)</i>	1.63 (<i>0.03)</i>				
۴Не	2.59 (<i>0.04)</i>	1.72 (<i>0.04)</i>	2.33 (<i>0.04</i>)				
⁸ He	2.69 (0.04)	1.76 (<i>0.03)</i>	2.49 (0.03)				
RMS radius for neutrons, protons and total							

.-Both weakly bound

Nucleus	S _{1n} (keV)	S _{2n} (keV)				
۴He	1710.0 <i>(20</i>)	974.8 <i>(4)</i>				
⁸ He	2529.0 <i>(8)</i>	2125.8 <i>(5)</i>				
In and 2n energy separation						

- .- Comparison of cross sections, and in particular elastic scattering will not be affected by the size of the projectile
- .- Thicker neutron layer of 8 He may lead to weaker dipole coupling to the continuum than in the case of 6 He
- .- Long range absorption when colliding with a heavy target at barrier energies
- .- ⁸He is more bound
- .- Breakup in ${}^{8}\text{He}$ < breakup in ${}^{6}\text{He}$

.- Both systems are Borromean

- Has the same r.m.s matter	radii
-----------------------------	-------

Nucleus	R _n (fm)	R _p (fm)	R (fm)			
⁴He	1.63 (<i>0.03)</i>	1.63 (<i>0.03)</i>	1.63 (<i>0.03)</i>			
۴He	2.59 (<i>0.04)</i>	1.72 (<i>0.04)</i>	2.33 (<i>0.04</i>)			
⁸ Не	2.69 (0.04)	1.76 (<i>0.03)</i>	2.49 (0.03)			
RMS radius for neutrons, protons and total						

.-Both weakly bound

Nucleus	S _{1n} (keV)	S _{2n} (keV)				
۴He	1710.0 <i>(20)</i>	974.8 <i>(4)</i>				
⁸ He	2529.0 <i>(8)</i>	2125.8 <i>(5)</i>				
In and 2n energy separation						

.- Comparison of cross sections, and in particular elastic scattering will not be affected by the size of the projectile

- Thicker neutron layer of ⁸He may lead to weaker dipole coupling to the continuum than in the case of ⁶He

- .- Long range absorption when colliding with a heavy target at barrier energies
- .- ⁸He is more bound
- .- Breakup in ${}^{8}\text{He} < \text{breakup in } {}^{6}\text{He}$

.- $^{6,8}\mathrm{He}$ 1n and 2n-stripping in collisions with $^{208}\mathrm{Pb}$

	Q(MeV) 1n-stripping	Q(MeV) 2n-stripping
⁶ He	2.07	8.15
⁸ He	1.35	6.98

Better Q-matching for the case of $^8\mathrm{He}$

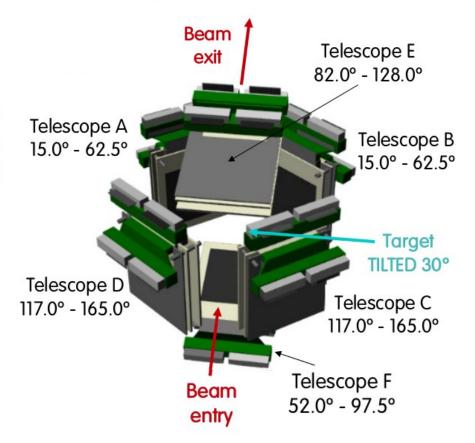
- .- Spectroscopic factors
 - $<^{6}$ He $|^{5}$ He+n> -> 1.6 $<^{8}$ He $|^{7}$ He+n> -> 2.9

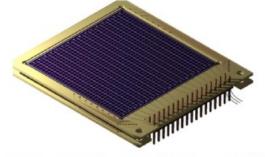
$$<^{6}\text{He} |^{4}\text{He}+2n > \sim <^{8}\text{He} |^{6}\text{He}+2n > \sim 1$$

.- $^{6,8}\mathrm{He}$ 1n and 2n-stripping in collisions with $^{208}\mathrm{Pb}$

		Q(MeV) 1n-stripping	Q(MeV) 2n-stripping	Better Q-matching for the case of ⁸ He
6	Ъ	2.07	8.15	
8	³ Не	1.35	6.98	Neutron stripping should be more
S	< ⁶ H < ⁸ H	coscopic factors le $ ^{5}$ He+n> - le $ ^{7}$ He+n> - He $ ^{4}$ He+2n> -	> 1.6	important for ⁸ He. Significant coupling effects due to 1n stripping in particular should be apparent in the elastic scattering at near-barrier energies $n > \sim 1$

Colloque GANIL 2017

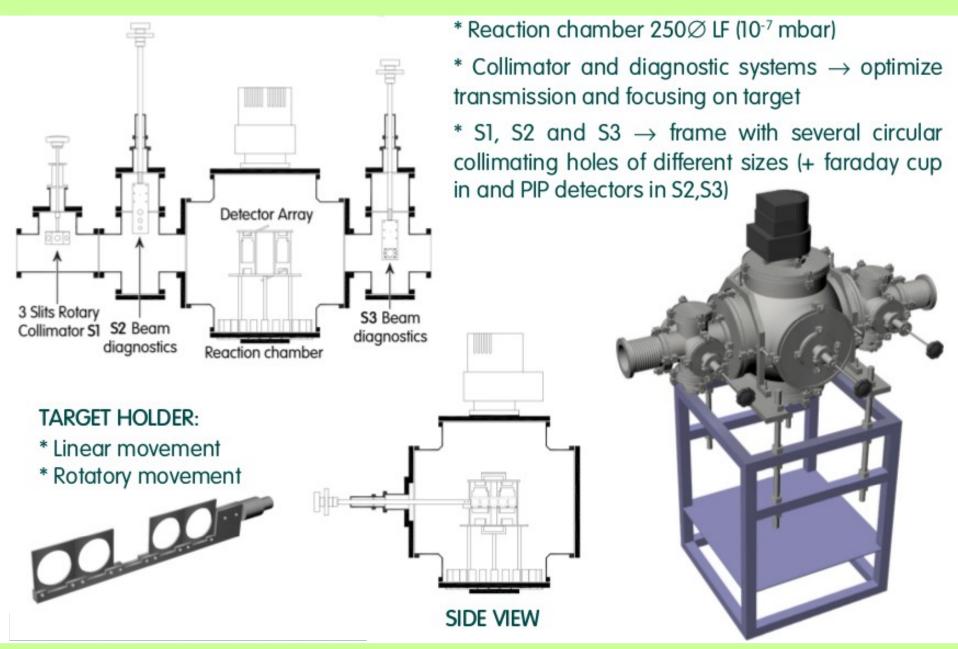

(Amboise, 15th -20th of October 2017) A


E587S @ GANIL experimental setup

Detection system developed as part of this work with the aim of studying the structure and dynamics of exotic nuclei using nuclear reactions.

Design requirements:

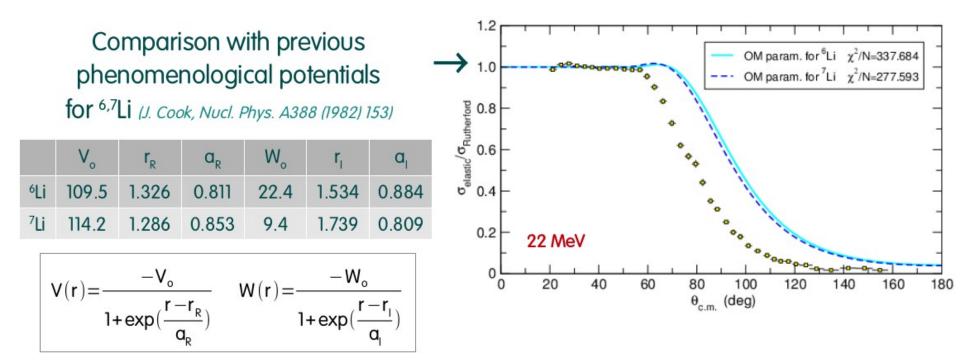
- * Symmetric position of telescopes
- * Maximum angular range
- * Angular range overlap
- * Large solid angle

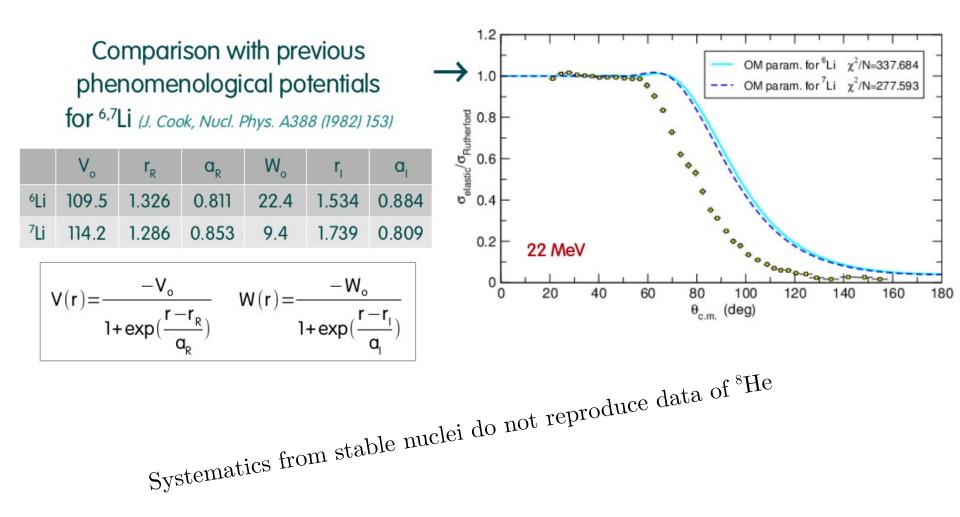


O. Tengblad et al., Nucl. Instr. and Meth. Phys. Res. A525 (2004) 458.

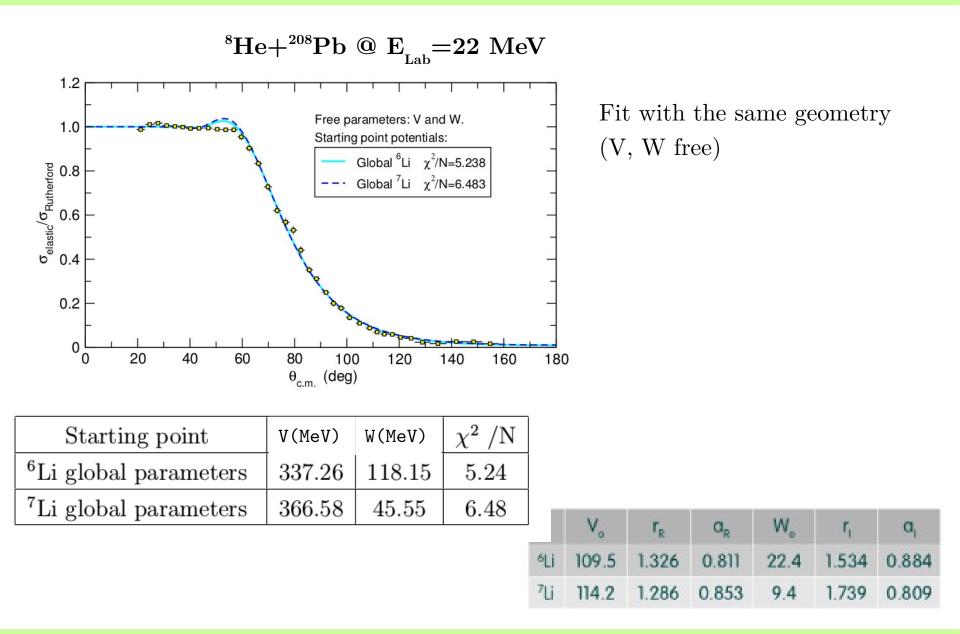
Colloque GANIL 2017

12 DSSSD detectors arranged in 6 particle telescopes First stage (Δ E) 40 μ m, Second stage (E) 1 mm Total solid angle for the system: 26% (4 π)

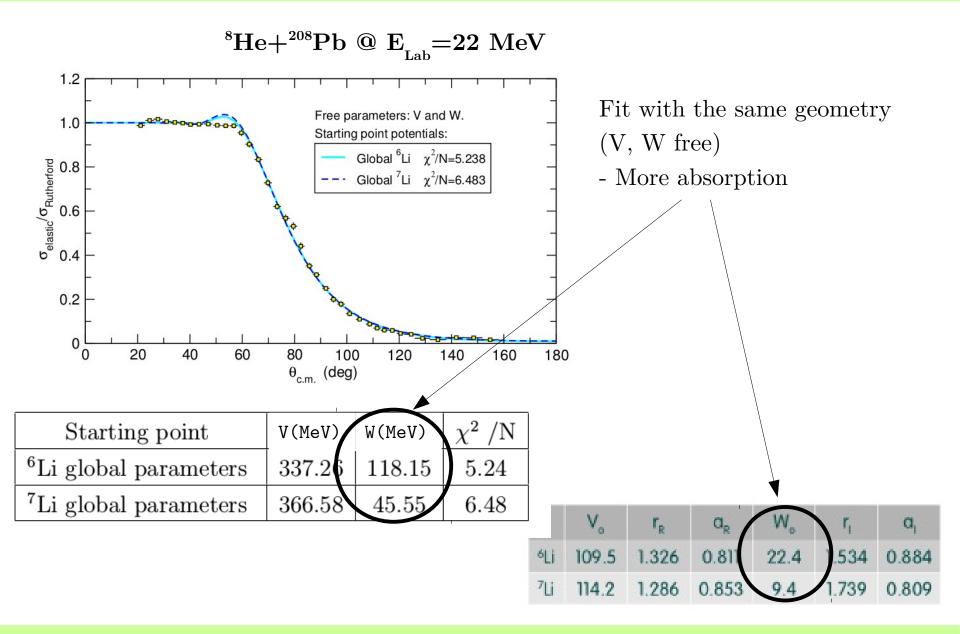

E587S @ GANIL beam diagnostics


Colloque GANIL 2017

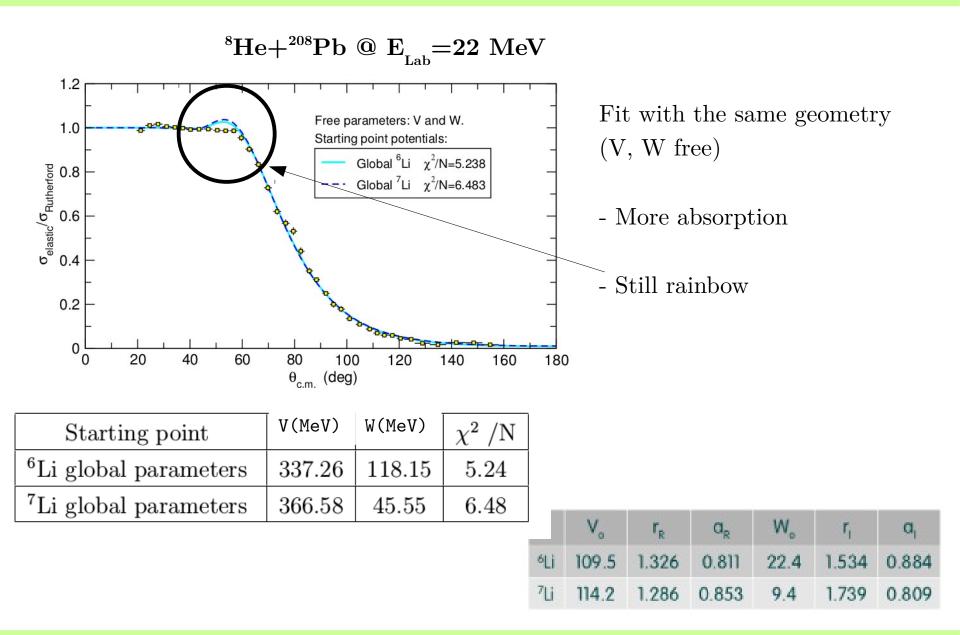
(Amboise, 15th -20th of October 2017)


 $^{8}\text{He}+^{208}\text{Pb} @ E_{_{\text{Lab}}}=22 \text{ MeV}$

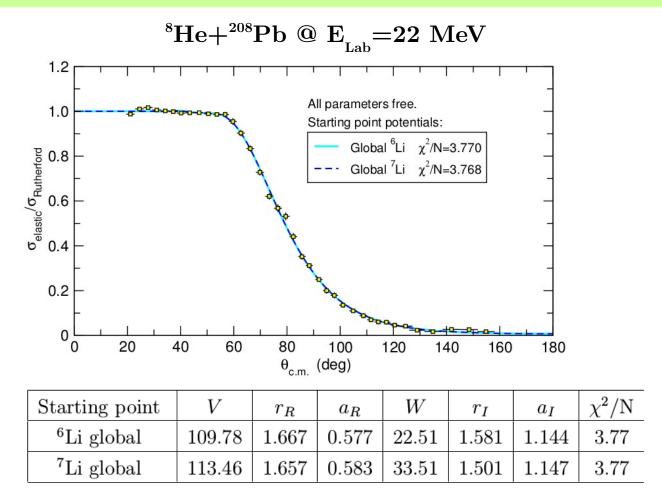
 $^{8}\text{He}+^{208}\text{Pb} @ E_{_{\text{Lab}}}=22 \text{ MeV}$



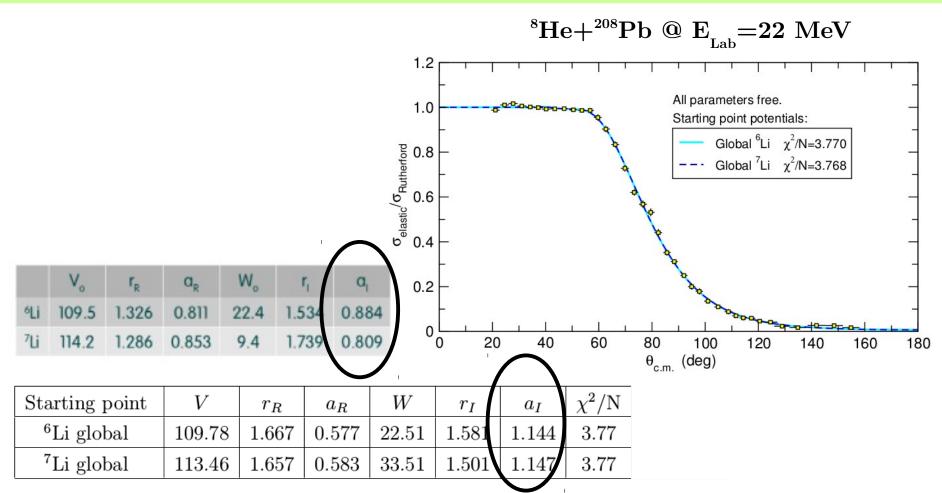
Colloque GANIL 2017


Colloque GANIL 2017

(Amboise, 15th -20th of October 2017)


Colloque GANIL 2017

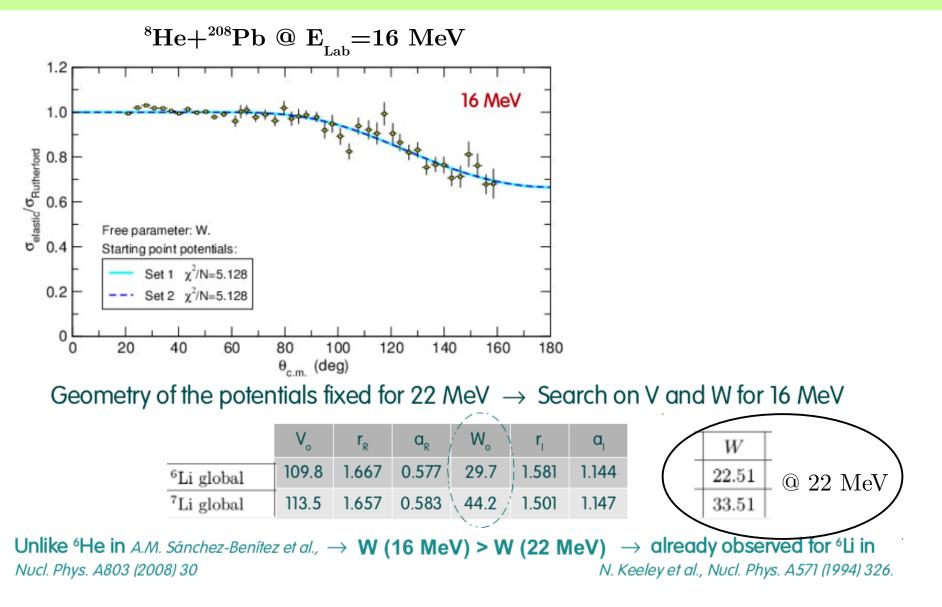
(Amboise, 15th -20th of October 2017)


Colloque GANIL 2017

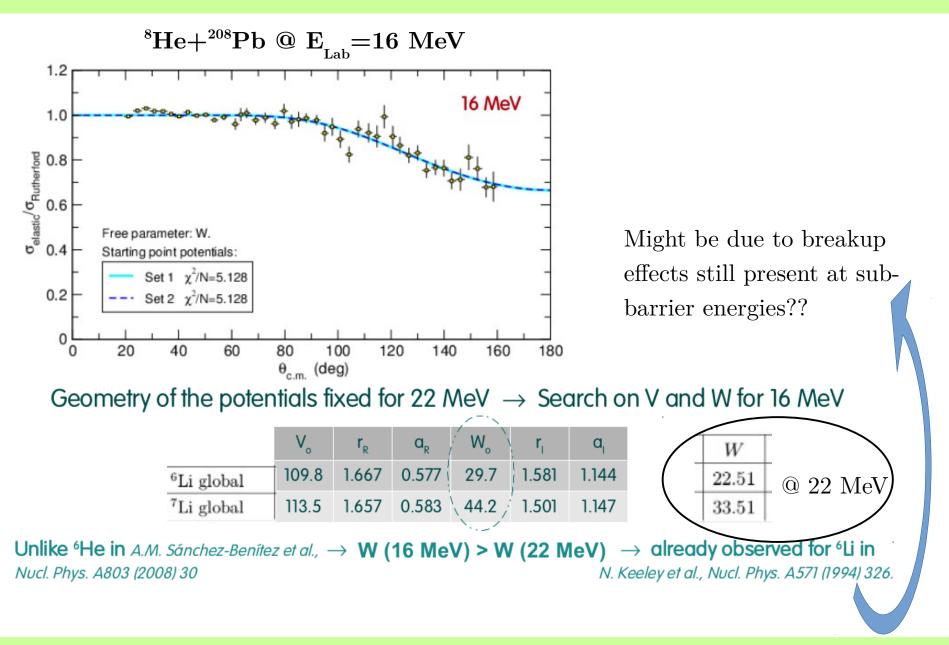
(Amboise, 15th -20th of October 2017)

Fit with six parameter free

Colloque GANIL 2017



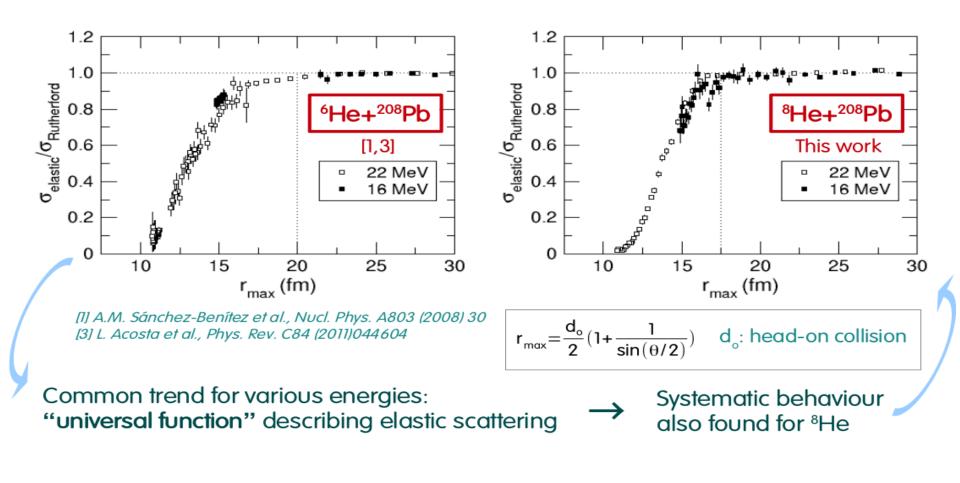
Larger values for the imaginary diffusenesses, responsible for the absorption of flux from the elastic channel:


- * Existence of long-range mechanisms
- * Vanishing of the Coulomb-nuclear rainbow

Colloque GANIL 2017

(Amboise, 15th -20th of October 2017)

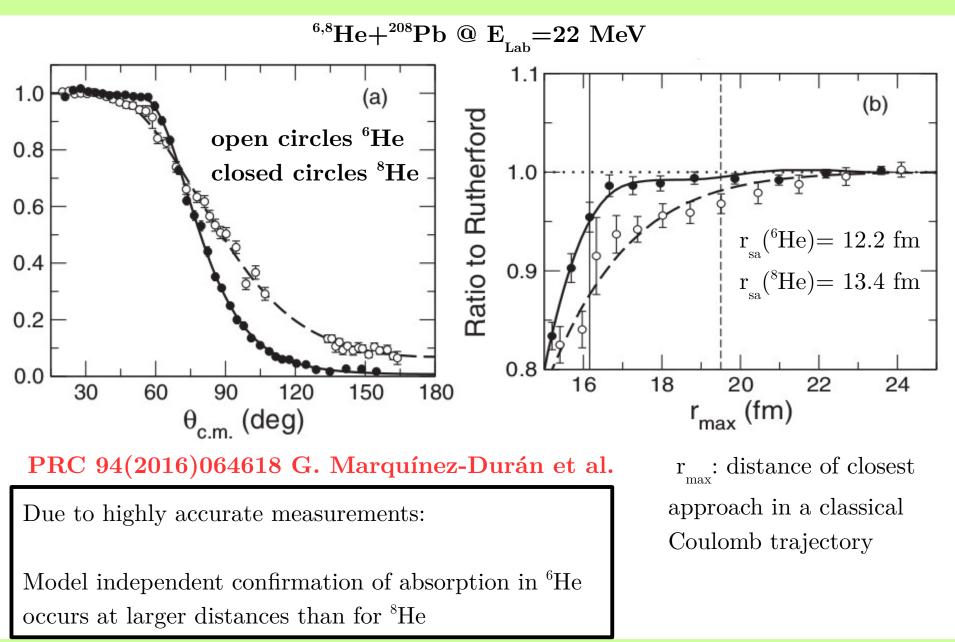
Colloque GANIL 2017


Colloque GANIL 2017

(Amboise, 15th -20th of October 2017) A. M. Sán

Absorption of elastic flux in ^{6,8}He: range of distances

 a_i^{8} He (~ 1.2 fm) { > stable nuclei < halo ⁶He ($a_i = 1.89$ fm)


Behaviour of ⁶He will differ from Rutherford at distances > ⁸He

Collogue GANIL 2017

(Amboise, 15th -20th of October 2017)

Absorption of elastic flux in ^{6,8}He: range of distances

Colloque GANIL 2017

(Amboise, 15th -20th of October 2017)

Neutron stripping in ⁶He and ⁸He

PRC 94(2016)064618 G. Marquínez-Durán et al.

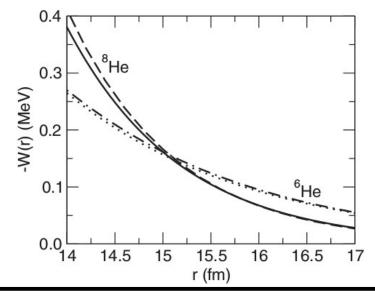


TABLE I. Optical model parameters fitting the 22 MeV ⁸He and ⁶He +²⁰⁸Pb elastic scattering data. Radii follow the convention $R_i = r_i \times A_t^{1/3}$ fm and $r_c = 1.3$ fm.

Projectile	V	r_V	a_V	W	r_W	a_W	$\sigma_{\rm R}~({\rm mb})$	χ^2/N
⁸ He ⁶ He							1520 1459	3.76 0.91
$^{6,8}\text{He}+^{208}\text{Pb} @ 22 \text{ MeV}$								

.- W(⁶He) less absorptive than W(⁸He) $\sigma_{_{\rm R}}(^{^{6}}{\rm He}) < \sigma_{_{\rm R}}(^{^{8}}{\rm He})$

.- W(⁶He) more diffuse than W(⁸He) Coul. breakup (⁶He) > Coul. breakup (⁸He)

 $\textbf{.- } \sigma_{_{\rm fus}}(^{6}{\rm He}) \sim \sigma_{_{\rm fus}}(^{8}{\rm He}) \qquad ({\rm fusion})$

Colloque GANIL 2017

(Amboise, 15th -20th of October 2017)

Neutron stripping in ⁶He and ⁸He

PRC 94(2016)064618 G. Marquínez-Durán et al.

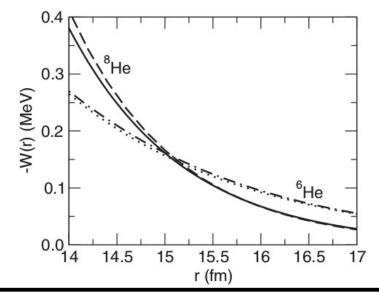


TABLE I. Optical model parameters fitting the 22 MeV ⁸He and ⁶He +²⁰⁸Pb elastic scattering data. Radii follow the convention $R_i = r_i \times A_t^{1/3}$ fm and $r_c = 1.3$ fm.

Projectile	V	r_V	a_V	W	r_W	a_W	$\sigma_{\rm R}~({\rm mb})$	χ^2/N
⁸ He	157.1	1.651	0.557	10.5	1.733	1.137	1520	3.76
⁶ He	114.2	1.286	0.632	9.44	1.247	1.865	1459	0.91
^{6,8} He+ ²⁰⁸ Pb @ 22 MeV								

.- W(⁶He) less absorptive than W(⁸He) $\sigma_{_{\rm R}}(^{^{6}}{\rm He}) < \sigma_{_{\rm R}}(^{^{8}}{\rm He})$

.- $W(^{6}He)$ more diffuse than $W(^{8}He)$ Coul. breakup (^{6}He) > Coul. breakup (^{8}He)

 $\textbf{.- } \sigma_{_{\rm fus}}(^{6}{\rm He}) \sim \sigma_{_{\rm fus}}(^{8}{\rm He}) \qquad ({\rm fusion})$

In collisions ^{6,8}He+²⁰⁸Pb at barrier energies (~ 20 MeV) Neutron stripping ⁸He >> ⁶He

Colloque GANIL 2017

(Amboise, 15th -20th of October 2017)

Summary and outlook

.- The experiment E587S to study the elastic scattering and reaction channels of ${}^{6,8}\text{He}+{}^{208}\text{Pb}$ @ 16, 22 MeV, bellow and around the Coulomb barrier, was successfully performed in GANIL.

.- The detector GLORIA was used for the first time with a radioactive beam, showing excellent performances in terms of portability, energy resolution and particle identification.

.- Due to the high quality of the elastic data, it is apparent in a model independent basis that absorption mechanisms takes place at longer distances for ⁶He than ⁸He.

.- In the framework of the Optical Model, the previous point is confirmed and the resulting reaction cross sections suggest the neutron stripping mechanism to be stronger in the case of 8 He.

.- Angular distribution for the ratio ${}^{6}\text{He}/{}^{8}\text{He}$ and ${}^{4}\text{He}/{}^{8}\text{He}$ are to be interpreted in the context of breakup and neutron stripping but the structure of ${}^{8}\text{He}$ makes the calculation complex.

Link to Gloria Marquínez Durán's PhD. dissertation

http://rabida.uhu.es/dspace/handle/10272/12397

ARIAS MONTANO REPOSITORY @ Univ. of Huelva

PUBLIC ACCESS !!

Thank you for your attention !!