Neutron correlations in the continuum of core+4n systems

Aldric REVEL^{1,2} for the R3B Collaboration

¹ GANIL, Caen, France ² LPC, Caen, France

aldric.revel@ganil.fr

Aldric REVEL (GANIL, LPC)

Motivation

- Pairing correlations play essential role in atomic nuclei and in neutron stars
 - oscillations in S_n values
 - enhanced pair transfer
- Pairing scheme towards the drip-line ?
 - Study n-n correlations in various systems (core+xn, haloes, drip-line nuclei...)
 - Decay modes and spectroscopy of intermediate states
 - Correlation functions of the pairs
 - Average distance rnn between neutrons
- Possible tetra neutron correlations
 - role in describing superfluidity in nuclei ?
 - first hints at GANIL and RIKEN

Neutron correlations in isotones - ¹⁸C & ²⁰O

- High energy proton knock-out (p,2p) \rightarrow Quasi-free reaction
- Deeply bound proton \rightarrow Promote neutrons into the continuum
- Neutron correlations unaffected by proton knock-out
- Deduce correlations from subsequent decay patterns

-1p

Neutron correlations in isotones - ${}^{18}C$ & ${}^{20}O$

- High energy neutron knock-out (p,pn)
 →Quasi-free reaction
- Deeply bound neutron
 →Promote neutrons into the continuum
- Neutron correlations likely affected by neutron knock-out
- \bullet Qualitative/quantitative differences between ^{20}O and ^{18}C isotones?

GSI : Setup and principle

Decay energy (E_d)

Relative momentum distribution (q_{nn})

n-n correlation function (C_{nn})

¹Lednicky&Lyuboshits, SJNP 35 (1982) 770

¹Lednicky&Lyuboshits, SJNP 35 (1982) 770

¹Lednicky&Lyuboshits, SJNP 35 (1982) 770

¹Lednicky&Lyuboshits, SJNP 35 (1982) 770

Aldric REVEL (GANIL, LPC)

¹Lednicky&Lyuboshits, SJNP 35 (1982) 770

How is E_d shared between the three particles?

- ¹⁸C* enhanced pairing : 85% direct emission
- ²⁰O* inhibited pairing : 50% sequential emission
- Neutron source size of the order of A=18-20 liquid drop

- n-n pairing in neighboring isotones
- ¹⁸C* strongest correlations observed :
 - Due to (core+4n) configuration ?
- $\bullet\,$ Difference between $^{18}\text{C*}$ and $^{20}\text{O*}$:
 - Influence of reaction mechanism ?

- n-n pairing in neighboring isotones
- ¹⁸C* strongest correlations observed :
 - Due to (core+4n) configuration ?
- $\bullet\,$ Difference between $^{18}\text{C*}$ and $^{20}\text{O*}$:
 - Influence of reaction mechanism ?

Coming next...

- Evolution of r_{nn} , C_{nn} and m_{nn}^2 toward the drip-line
- Explore core+4n correlations with NeuLAND
- Build a bridge between experiment and theory

