Opportunities in Nuclear Structure and Dynamics with VAMOS

> A. Lemasson Colloque GANIL 2017

S. Pullanhiotan et al. , NIM A 593 (2008) 343 M. Rejmund *et al.*, NIM A 646 (2011) 184

Versatility arises from variety of detectors

(Ionization Chambers, Drift Chambers, MWPC, Plastic, Silicon Wall...)

Continuous devellopement of detectors starting from VAMOS++ (driven by the goal to improve performances)

- 2010 : Upgrade of the Focal Plane detection (x2 size)
- 2012 : New MWPC at the entrance
- 2014 : Upgrade to Ionization Chambers (Phase 1)
 Upgrade of electronics readout
- 2015 : Upgrade to Ionization Chambers (Phase 2)
- 2016 : EXOGAM at the Focal Plane
- 2017 : Large Size MWPC at the Focal Plane
 Upgrade to NUMEXO 2

What is next? What are your needs?

Isotopic identification(Z,A,q)

GANIL/VAMOS 19/07/2015

Masse

Prompt γ-ray spectroscopy at the Coulomb barrier

Coupling to efficient γ -ray spectrometers

EXOGAM 🗲 AGATA

Fission, Deep Inelastic Collisions

AGATA

Prompt γ -ray spectroscopy at Coulomb barrier energies at GANIL

✓ Heavy ions stable beams (²³⁸U)

High intensity around the Coulomb barrier

✓ Inverse kinematics :

High kinematical focusing

✓ Coulomb barrier (v/c~0.1), Angular momentum

 VAMOS++: Large(st) Acceptance, high resolution (mass) spectrometer

✓ Great γ-ray spectrometers : EXOGAM -> AGATA

Challenges

– Low energy / Counting rate on γ -ray detectors

Prompt γ-ray spectroscopy of isotopically identified fission fragments

 $^{48}Ca + ^{208}Pb \rightarrow ^{254}No + 2n$

Focal plane

1.

2.

- Beam dump -> Ongoing
- MUSETT & ToF detection -> Ongoing
- Detection shielding -> Ongoing
- New focal plane chamber -> OK
- Low pressure regulation -> OK
- 3. Transition He vacuum
 - C Window -> OK
- 4. Adaptation of AGATA target chamber

-> OK

=> Ready for second half of 2018 ?

VAMOS competing with Q3D

¹⁹Ne(p,p')¹⁹Ne*, I ~ 10⁷pps

- inverse kinematics with RIB
- inelastic protons in VAMOS
- α, p in CD PAD
 (annular silicon detector)

F. Boulay PhD GANIL 2015

Opportunities with SPIRAL 1 Beams

Excitation Energy Spectra from proton spectrum in VAMOS

TIARA+MUST2+VAMOS+EXOGAM @ GANIL

transfer reactions in inverse kinematics

Inverse kinematics->(d,p),(d,t),(d,³He),(d,d')

B. Fernandez-Dominguez et al, PRC 84, (2011), 011301

ANALYSIS : Example d(²⁰O,p)²¹O

UNBOUND STATES: $d(^{20}O,p)^{21}O \rightarrow ^{20}O + n$ (stripping)

Triple coincidence: particle+y+recoil

And more from Freddy Flavigny on Thursday VAMOS + MUST with ¹⁴O and ¹⁸Ne

MUGAST-AGATA @VAMOS

Courtesy D. Beaumel Detectors, FEE and new chamber are available

An intermediate step to high resolution Direct reaction studies with AGATA

Transfer in inverse kinematics

Triple coincidences : MUGAST (p,d,t,³H) – AGATA (γ)– VAMOS

Improvements:

-> MUST2 + New det. Gaspard / Trace

- -> Possibility of cryogenic target
- -> SPIRAL 1 Upgrade beams

Letters of Intent

Nuclear astrophysics:

•²⁵Al(3He,d) (*N.de Séréville, F. Hammache, IPNO*) •³⁰P(3He,d) or (d,p) (*N.de Séréville*, *F.Hammache*, *IPNO*) •⁷⁹Se(d,p)⁸⁰Se (G. de Angelis, INFN-LNL)

Shell evolution:

•⁵⁶Ni(d,p)(d,t) (*F.Flavigny*, *IPNO*, *O.Sorlin*, *GANIL*) •²⁸Mg(d,p) (*A.Matta,LPC*, *W.Carford*, *University of Surrey*) •^{46,48}Ar(t,p) (*D.Mengoni*, University of Padova) •67As(3He,d) (D. Mengoni, A. Goasduff, University of Padov)

Clusters, pairing, correlations & others

•⁵⁶Ni(3He,p)($6Li,\alpha$) (*M.Assie*, *IPNO*)

Some questions ... as todays BTD/CATS do not fit in

- Beam normalisation? 1) Focal Plane - Plastic / Diamant (I> 10⁵)?
- Beam Spot / Doppler Correction in AGATA 2) 10⁵pps Drift Chambers 2x (X,Y) ?

Nuclear Dynamics

- Fission Dynamics : M. Caamano Tomorrow
- VAMOS + INDRA : P. Saint Onge Yesterday
- Deep Inelastic Collisions studies
 - Pathway to N=126
 - Zero degree I. Stefan yesterday

PRL 115, 172503 (2015) PHYSICAL REVIEW LETTERS

week ending 23 OCTOBER 2015

Pathway for the Production of Neutron-Rich Isotopes around the N = 126 Shell Closure

Y. X. Watanabe,^{1,*} Y. H. Kim,^{23,†} S. C. Jeong,^{1,‡} Y. Hirayama,¹ N. Imai,^{1,§} H. Ishiyama,^{1,‡} H. S. Jung,¹ H. Miyatake,¹ S. Choi,^{2,3} J. S. Song,^{2,3,4} E. Clement,⁵ G. de France,⁵ A. Navin,^{5,∥} M. Rejmund,⁵ C. Schmitt,⁵ G. Pollarolo,⁶ L. Corradi,⁷ E. Fioretto,⁷ D. Montanari,⁸ M. Niikura,^{9,¶} D. Suzuki,^{9,**} H. Nishibata,¹⁰ and J. Takatsu¹⁰

Fission Dynamics

Uniqueness of GANIL

²³⁸U beams
VAMOS = > Isotopic identification event by event
Fission Yields
Isotopic distributions

SPIDER:

- target-like nuclei (30°-47°)
- identification of fissionning system
- control of the the excitation energy

VAMOS:

- fission fragments
- EXOGAM:

- gamma rays

PHYSICAL REVIEW C 92, 034606 (2015)

Characterization of the scission point from fission-fragment velocities

M. Caamaño,^{1,2,*} F. Farget,^{1,2,†} O. Delaune,^{1,‡} K.-H. Schmidt,¹ C. Schmitt,¹ L. Audouin,³ C.-O. Bacri,³ J. Benlliure,² E. Casarejos,⁴ X. Derkx,^{1,§} B. Fernández-Domínguez,⁵ L. Gaudefroy,⁶ C. Golabek,^{1,1} B. Jurado,⁷ A. Lemasson,¹ D. Ramos,² C. Rodríguez-Tajes,^{2,1} T. Roger,¹ and A. Shrivastava^{1,8}

PHYSICAL REVIEW C 89, 024614 (2014)

Transfer reactions in inverse kinematics: An experimental approach for fission investigations

C. Rodríguez-Tajes,^{1,2,*} F. Farget,^{1,1} X. Derkx,^{1,3,†} M. Caamaño,² O. Delaune,^{1,§} K.-H. Schmidt,¹ E. Clément,¹ A. Dijon,^{1,§} A. Heinz,⁴ T. Roger,¹ L. Audouin,⁵ J. Benlliure,² E. Casarejos,⁶ D. Cortina,² D. Doré,⁷ B. Fernández-Domínguez,² B. Jacquot,¹ B. Jurado,⁸ A. Navin,¹ C. Paradela,² D. Ramos,² P. Romain,⁹ M. D. Salsac,⁷ and C. Schmitt¹

PHYSICAL REVIEW C 88, 024605 (2013)

Isotopic yield distributions of transfer- and fusion-induced fission from ²³⁸U + ¹²C reactions in inverse kinematics

M Caamaño ^{1,2,*} O Delaune ^{1,†} F Farget ^{1,‡} X Derkx ^{1,§} K -H Schmidt ¹ I. Audouin ³ C -O Bacri ³ G Barreau ⁴

²³⁸U (6.1 MeV/u) + 12C

and Second Arm ...

arger

MWPPAC

MWPPAC

KON IN

AWPPACS

Isotopic identification of

^{Lonization} Hamber

MWPPAGS

VAMOS

Tonization Chamber Clovers

- fission fragment 1
- fission fragment 2

Properties of coincident fragments isotope by isotope = unprecedented insights into the nuclear structure and the fission dynamics.

Opportunities with VAMOS

- detection from protons to the heaviest nuclei
- already covering a large physics program
 Your new dreams or crazy ideas will extend it further !

Grand DPS-MWPC

1 détecteur

- 1000 fils X et 150 fils Y
- 2000 fils de temps
 - 3150 fils de 20 μm tissés
- 1150 signaux a traiter
- Mesure les positions et le temps des noyaux au plan focal

2011 – 1 x 50 mm

2017 – 2 x 1000 mm

NUMEXO 2 @ VAMOS

- Electronique Numérique Numériseurs NUMEXO2
- S'appuie sur les développements importants fait pour EXOGAM2 au GANIL
- Modifications pour VAMOS pour la mesure : ⇒ de l'énergie de Chambre à Ionisation
 - \Rightarrow des positions avec les nouvelles chambres à fil

What for ?

- Prompt g-ray spectroscopy
- Fusion evaporation reactions
- Low cross-sections \rightarrow separator + tagging techniques
- Regions of interest : VHE/SHE, ¹⁰⁰Sn region, proton drip-line, neutron-deficient Pb
- Note: no other place foreseen for the coupling of AGATA with a zero degree separator

Physics with MUGAST

2 dedicated workshops organized at Orsay and Padova

Shell evolution & deformation

- Mapping of neutron orbitals around N=28
- Oblate driving force in n-deficient nuclei above ⁵⁶Ni
- Shape transition along and across N=28
- Interplay of single-part and collective structures in ⁴⁶Ca
- o Shell evolution toward the island of inversion
- Shape coexistence in Kr isotopes
- Island of Inversion and shape coexistence in ^{30,31}Mg

Neutron-proton pairing

np-pairing in fp-shell

> Astrophysics

- Breakout from hot CNO to rp process
- Explosive H-burning in Novae
- Surrogate method for s-process reactions
- o ⁶⁰Fe

Reaction dynamics

• Space-time characterization of emitting sources in HI collisions

Courtesy D. Beaumel

Mainly stripping reactions

F.Flavigny, O.Sorlin et al. A.Goasduff, D.Mengoni, et al. L.Fortunato, D.Mengoni et al. S.Leoni et al. A.Matta, W.Catford, N.Orr, et al. A.Matta, W.Catford, et al. B.Fernandez-Dominguez et al.

M. Assie et al.

C.Diget et al. N.de Sereville, F.Hammache et al. G.de Angelis et al. A.Matta, W.Catford, et al.

G. Verde, A.Chbihi, Q.Fable et al

MUGAST

MUst2 - Gaspard - Trace

An intermediate step to high resolution Direct reaction studies with AGATA

> New detectors developed for GASPARD/TRACE

- few MUST2 detectors at forward angle
- MUST2 electronics

- New geometries
- New packaging: thin frame Kapton at 90°
- NTD, random cut, reverse mounting
- Thin and thick

The VAMOS-GFS upgrade

- 1. Focal plane
 - Beam dump
 - MUSETT & ToF detection
 - Detection shielding
 - \rightarrow New focal plane chamber
- 2. Low pressure regulation
- 3. Transition He vacuum
 - C Window
- 4. Adaptation of AGATA target chamber