Transfer reactions induced by ⁵⁶Ni: pairing and N=28 shell closure

Anastasia Georgiadou Supervised by Marlène Assié

20th COLLOQUE GANIL

- ⁵⁶Ni: a doubly magic nucleus?
- N=28 shell closure
- Experimental set-up

- One neutron pick-up
- Perspectives: ⁵⁶Ni(d,p)⁵⁷Ni & ⁵⁶Ni (d,α) ⁵⁴Co

⁵⁶Ni: a doubly magic nucleus?

From Theory: n-p pairing may be important in N=Z nuclei with high J valence.⁵⁶Ni :the heaviest N=Z nucleus for which we can do transfer and study np pairing

- For nuclei with N≠Z, nn and pp pairs are favoured.
- In the case of nuclei with N≈Z, n and p occupy the same shell model orbit.
- Large spatial overlap of the wave functions of proton and neutron in the f7/2 shell in ⁵⁶Ni

Z N=Z N=Z OSN 60 Ca

The double magicity of ⁵⁶Ni raises also the question what is the pairing at shell closure?

⁵⁶Ni: a doubly magic nucleus?

Doubly Magic nuclei with both proton and neutron number corresponding to closed shells have played a structuring role in nuclear physics.

That makes the shell structure of ⁵⁶Ni of great interest.

Extraction of the neutron SF, to do so we use single particle transfer reactions.

N=28 shell closure

neutrons 🧧

protons

N=28 shell closure

N=28 shell closure

20th Colloques GANIL/A.Georgiadou, georgiadou@ipno.in2p3.fr

Primary beam : ⁵⁸Ni at 74,5 A MeV Rotating target (CLIM) : ¹²C (1 mm) Secondary beam : ⁵⁶Ni at 30A MeV

Primary beam : ⁵⁸Ni at 74,5 A MeV Rotating target (CLIM) : ¹²C (1 mm) Secondary beam : ⁵⁶Ni at 30A MeV

*The experiment "e644" was performed a GANIL,CAEN at Spring 2014.

Beam Contaminants

20th Collogues GANIL/A.Georgiadou, georgiadou@ipno.in2p3.fr

⁵⁶Ni(p,³He)⁵⁴Co ⁵⁶Ni(p,d)⁵⁵Ni ⁵⁶Ni(d,t) ⁵⁵Ni ⁵⁶Ni(d,p) ⁵⁷Ni ⁵⁶Ni(d,α)⁵⁴Co

Ion source *The experiment "e644" was performed at GANIL, CAEN at Spring 2014.

Velocity selection

Identification in A & Z

C0

Primary beam : ⁵⁸Ni at 74,5 A MeV Rotating target (CLIM) : ¹²C (1 mm) Secondary beam : ⁵⁶Ni at 30A MeV

⁵⁶Ni(p, ³He) ⁵⁴Co ⁵⁶Ni(p, d) ⁵⁵Ni ⁵⁶Ni(d, t) ⁵⁵Ni ⁵⁶Ni(d, p) ⁵⁷Ni ⁵⁶Ni(d, α) ⁵⁴Co

Beam Contaminants

20th Colloques GANIL/A.Georgiadou, georgiadou@ipno.in2p3.fr

20th Colloques GANIL/A.Georgiadou, georgiadou@ipno.in2p3.fr

*Illustration by Emmanuel Rindel

The reaction Kinematics

20th Colloques GANIL/A.Georgiadou, georgiadou@ipno.in2p3.fr

The reaction Kinematics

20th Colloques GANIL/A.Georgiadou, georgiadou@ipno.in2p3.fr

⁵⁶Ni(d,t)⁵⁵Ni

ORSAY

⁵⁶Ni(p,d)⁵⁵Ni

20th Colloques GANIL/A.Georgiadou, georgiadou@ipno.in2p3.fr

⁵⁶Ni(d,t)⁵⁵Ni

⁵⁶Ni(p,d)⁵⁵Ni

The excitation energy spectra in different angle in the centre of mass .

20th Colloques GANIL/A.Georgiadou, georgiadou@ipno.in2p3.fr

⁵⁶Ni(p,d)⁵⁵Ni

Differential cross-section for transfer reaction to gs and first excited state of ⁵⁵Ni

Calculation with DWBA: A.Georgiadou, J.Guillot

Differential cross-section for transfer reaction to gs and first excited state of ⁵⁵Ni

Calculation with DWBA: A.Georgiadou, J.Guillot

ORSAY

Calculation with DWBA : J. Guillot *Benjamin Le Crom, Thesis, Université Paris-Saclay, 2016.

⁵⁶Ni(p,d)⁵⁵Ni

Differential cross-section for transfer reaction to gs and first excited state of ⁵⁵Ni

Particle-Gamma Coincidences

ORSAY

Doppler Corrected Energy(KeV)

Particle-Gamma Coincidences

ORSAY

Doppler Corrected Energy(KeV)

Particle-Gamma Coincidences

ORSAY

Doppler Corrected Energy(KeV)

Perspectives: 56Ni(d,p)57Ni & 56Ni (d,a)54Co

- Conclude about the excited states of the (d,t) reaction by using the gamma-particle coincidences
- Analysis of the ⁵⁶Ni(d,p)⁵⁷Ni reaction
- Get the total cross section of the (d,α) for the study of the np pairing, completing the information about the strength of the isoscalar np pairing in ⁵⁶Ni.

THANK YOU

ANASTASIA GEORGIADOU

"E644 COLLABORATION"

A. Georgiadou^{*a*}, M. Assié^{*a*}, Y. Blumenfeld^{*a*}, B. Le Crom^{*a*}, F. Flavigny ^{*a*},L. Achouri^{*b*}, M. Aouadi^{*b*}, B. Bastin^{*c*}, A. Benitez^{*d*}, R. Borcea^{*e*}, W. Catford^{*f*}, E. Clement^{*c*}, A. Corsi^{*g*}, G. Defrance^{*c*}, M-C. Delattre^{*a*}, F. Delaunay^{*b*}, N. De Séréville^{*a*}, Q. Deshayes^{*b*}, B. Fernandez^{*h*}, M. Fisichella^{*i*}, S. Franchoo^{*a*}, J. Gibelin^{*b*}, A. Gillibert^{*g*}, J. Guillot^{*a*}, F. Hammache^{*a*}, O. Kamalou^{*c*}, A. Knapton^{*f*}, V. Lapoux^{*g*}, S. Leblond^{*b*}, M. Marques^{*b*}, A. Matta^{*f*}, P. Morfouace^{*a*}, N. Orr^{*b*}, J. Pancin^{*c*}, X. Pereira^{*b*,*h*}, L. Perrot^{*a*}, E. Pollacco^{*g*}, D. Ramos^{*h*}, T. Roger^{*c*}, F. Rotaru^{*e*}, J-A. Scarpaci^{*j*}, M. Sénoville^{*g*}, O. Sorlin^{*c*}, M. Stanoiu^{*e*}, I. Stefan^{*a*}, D. Suzuki^{*a*}, J-C Thomas^{*c*}, M. Vandebrouck^{*c*}, G. Verde^{*a*}

^aInstitut de Physique Nucléaire d'Orsay, Université Paris-Sud – CNRS/IN2P3, 91406 Orsay, France, ^bLaboratoire de Physique Corpusculaire de Caen, ENSICAEN – CNRS/IN2P3, 14050 Caen, France, ^cGrand Accélérateur National d'Ions Lourds, CEA/DSM – CNRS/IN2P3, 14076 Caen, France, ^dCentro de Física Nuclear da Universidade de Lisboa, 1649-003 Lisboa, Portugal, ^eHoria Hulubei National Institute of Physics and Nuclear Engineering, Măgurele, Romania, ^fDepartment of Physics, University of Surrey, Guildford GU2 5XH, United Kingdom, ^gService de Physique Nucléaire, CEA-Saclay/IRFU, 91191 Gif-sur-Yvette, France, ^hUniversidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain, ⁱLaboratori Nazionali del Sud, Instituto Nazionale di Fisica Nucleare, Catania, Italy, ^jCentre de Sciences Nucléaires et Sciences de la Matière, Université Paris-Sud – CNRS/IN2P3, 91406 Orsay, France

ORSAY

⁵⁶Ni(d,³He)⁵⁵Co

20th Colloques GANIL/A.Georgiadou, georgiadou@ipno.in2p3.fr

56Ni(d,p)57Ni

TIARA(aka Transfer and Inelastic All-angle Reaction Array) The SiHyBall annular detector (left) and the octagonal barrel (right).

BARREL

56Ni(d,d)56Ni

8 resistive charge division detectors

Thickness: 400 µm

HYBALL

⁵⁶Ni(d,p)⁵⁷Ni

6 individual wedge-shaped DSSSD

Thickness: 400 µm

Active surface segmented in 16 ring-shaped strings

